mahmoudalrefaey's picture
Update README.md
7ebdca1 verified
---
library_name: transformers
tags:
- llama-3
- code-generation
- qlora
- peft
- colab
license: llama3
datasets:
- codeparrot/conala-mined-curated
language:
- en
base_model:
- meta-llama/Meta-Llama-3-8B
pipeline_tag: text-generation
---
# Model Card for llama3-codeweaver-lora
## Model Details
- **Model name:** llama3-codeweaver-lora
- **Developed by:** [mahmoudalrefaey](https://huggingface.co/mahmoudalrefaey)
- **Funded by:** None (personal project)
- **Finetuned from:** [meta-llama/Meta-Llama-3-8B](https://huggingface.co/meta-llama/Meta-Llama-3-8B)
- **License:** LLaMA 3 license
This is a **LLaMA-3 8B model fine-tuned with QLoRA** on the [CoNaLa mined-curated dataset](https://huggingface.co/datasets/codeparrot/conala-mined-curated) for **code generation tasks**.
The adapter was trained on **Google Colab T4 (16GB)** using **fp16 mixed precision** with QLoRA for efficiency.
---
## Uses
### Direct Use
- Intended for **code generation assistant tasks** such as transforming natural language instructions into Python snippets.
- Educational use for learning about LLM fine-tuning with LoRA adapters.
### Downstream Use
- Can be further fine-tuned on specialized coding datasets (e.g. SQL, JS).
- Integration into coding assistants and research projects.
### Out-of-Scope Use
- Not intended for production-critical code security auditing.
- Not guaranteed to generate safe or fully optimized code.
- Should not be used in environments where code execution safety is critical without sandboxing.
---
## Training Details
### Training Data
- Dataset: [CoNaLa mined-curated](https://huggingface.co/datasets/codeparrot/conala-mined-curated)
- Dataset size used: ~7,000 samples
### Training Procedure
- **Method:** QLoRA fine-tuning with 4-bit quantization
- **Precision:** fp16 mixed precision
- **Hardware:** Google Colab T4 (16GB GPU)
- **Batch size:** 2 → effective batch 4 with accumulation
- **Epochs:** 3
- **Training time:** ~1h 30m
---
## Evaluation
### Testing Data
- Held-out validation split (10% of dataset)
### Metrics
- **Validation Loss** decreased steadily across epochs
- **Qualitative Evaluation:** Generated Python snippets from validation prompts
- Example outputs matched reference solutions for common coding tasks
### Example Prompt & Output
```
Prompt:
### Instruction:
Write code to convert integer num to list
### Code:
Generated:
[int(x) for x in str(num)]
```
## Environmental Impact
- Hardware: NVIDIA T4 (16 GB VRAM)
- Cloud Provider: Google Colab
- Compute Region: Unknown
- Training Duration: ~1.5 hours
## Citation
@misc{llama3-codeweaver-lora,
author = {Mahmoud Alrefaey},
title = {llama3-codeweaver-lora: A QLoRA fine-tuned LLaMA-3 model for code generation},
year = {2025},
publisher = {Hugging Face},
howpublished = {\url{https://huggingface.co/mahmoudalrefaey/llama3-codeweaver-lora}},
}