|
--- |
|
library_name: transformers |
|
license: bsd-3-clause |
|
base_model: |
|
- MIT/ast-finetuned-speech-commands-v2 |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- audiofolder |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
model-index: |
|
- name: ast-mlcommons-speech-commands |
|
results: |
|
- task: |
|
name: Audio Classification |
|
type: audio-classification |
|
dataset: |
|
name: audiofolder |
|
type: audiofolder |
|
config: default |
|
split: validation |
|
args: default |
|
metrics: |
|
- name: Precision |
|
type: precision |
|
value: 0.9743628199079283 |
|
- name: Recall |
|
type: recall |
|
value: 0.9743424814179531 |
|
- name: F1 |
|
type: f1 |
|
value: 0.9743165983480835 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# ast-mlcommons-speech-commands |
|
|
|
This model is a fine-tuned version of [MIT/ast-finetuned-speech-commands-v2](https://huggingface.co/MIT/ast-finetuned-speech-commands-v2) on the audiofolder dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.1346 |
|
- Precision: 0.9744 |
|
- Recall: 0.9743 |
|
- F1: 0.9743 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 32 |
|
- seed: 42 |
|
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_epochs: 5 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | |
|
|:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:| |
|
| 0.0799 | 1.0 | 3496 | 0.1498 | 0.9596 | 0.9573 | 0.9577 | |
|
| 0.0624 | 2.0 | 6992 | 0.1141 | 0.9689 | 0.9687 | 0.9685 | |
|
| 0.0091 | 3.0 | 10488 | 0.1285 | 0.9713 | 0.9713 | 0.9711 | |
|
| 0.0384 | 4.0 | 13984 | 0.1237 | 0.9743 | 0.9743 | 0.9742 | |
|
| 0.0019 | 5.0 | 17480 | 0.1346 | 0.9744 | 0.9743 | 0.9743 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.51.3 |
|
- Pytorch 2.7.0+cu128 |
|
- Datasets 3.6.0 |
|
- Tokenizers 0.21.1 |