|
--- |
|
language: |
|
- en |
|
base_model: |
|
- mair-lab/sft-simple |
|
--- |
|
|
|
# EARL - RL Fine-tuned (S + C) (8B) |
|
|
|
**Model Name:** `mair-lab/sft-simple.rl-simple-n-complex` |
|
**Model Size:** 8B parameters |
|
**Base Checkpoint:** [`mair-lab/sft-simple`](https://huggingface.co/mair-lab/sft-simple) |
|
**Training Method:** Supervised Fine-Tuning (SFT) on Simple Edits β Reinforcement Learning (RL) on Simple + Complex Edits |
|
**Datasets:** Simple Edit (S), Complex Edit (C) |
|
|
|
This model is part of the EARL benchmark study: |
|
π [EARL: The Promise of RL for Autoregressive Image Editing](https://arxiv.org/abs/2508.01119) |
|
|
|
## Model Summary |
|
|
|
This RL fine-tuned model builds on the SFT-simple checkpoint, using reinforcement learning to improve performance on both simple and complex edit tasks. Itβs optimized using a human-aligned reward function across diverse editing instructions. |
|
|
|
β‘οΈ **Inference instructions:** [GitHub Repo](https://github.com/saba96/EARL?tab=readme-ov-file) |
|
|
|
## Full Benchmark Results |
|
|
|
| Model | Base Model | OmniEdit | EmuEdit | AURORA | MB | VisMin | I2EBench | **AVG** | |
|
|---------------------------|------------|----------|---------|--------|------|--------|----------|---------| |
|
| Magicbrush | SD v1.5 | 3.43 | 3.28 | 3.01 | 3.64 | 3.48 | 3.06 | 3.32 | |
|
| InstructPix2Pix | SD v1.5 | 3.97 | 3.24 | 3.05 | 3.12 | 2.94 | 3.23 | 3.26 | |
|
| Aurora | SD v1.5 | 4.50 | 4.40 | 4.12 | 4.62 | 3.82 | 3.58 | 4.17 | |
|
| Omnigen* | - | 5.68 | 5.00 | 4.10 | 4.68 | 4.09 | 4.68 | 4.70 | |
|
| **SFT (S)** | Emu3 | 5.73 | 3.66 | 3.58 | 3.19 | 3.57 | 3.59 | 3.88 | |
|
| **EARL SFT (S) β RL (S+C)** | SFT (S) | **6.39** | 4.47 | **4.27** | 4.52 | 4.93 | 4.19 | **4.80** | |
|
|
|
> π **Highlight:** Our RL model outperforms all supervised and diffusion baselines, setting a new state-of-the-art across the EARL benchmark with **4.80 AVG**. |
|
|
|
## Use Cases |
|
- Simple edits of object, attribute, style and environment changes |
|
- Complex edits of counting, spatial relation and action changes |
|
- Instruction-following visual transformations |