BEVANet: Bilateral Efficient Visual Attention Network for Real-Time Semantic Segmentation (ICIP 2025 spotlight)
Ping-Mao Huang, I-Tien Chao, Ping-Chia Huang, Jia-Wei Liao, Yung-Yu Chuang
National Taiwan University
Model Description
- Task: Real-Time Semantic Segmentation
- Dataset: Cityscapes
- Model: BEVANet
BEVANet semantic segmentation model trained on Cityscapes dataset. Achieves 81.0% mIoU with 32.8 FPS on RTX3090.
Performance
- mIoU: 81.0%
- FPS: 32.8 (RTX3090)
- Parameters: 58.6M
Usage
from models.BEVANet import BEVANet_SEG
# Load model from specific branch
model = BEVANet_SEG.from_pretrained(
"maomao0819/BEVANet",
revision="main"
)
# For main branch (no revision needed)
# model = BEVANet_SEG.from_pretrained("maomao0819/BEVANet")
All Model Variants
Model | Branch | Dataset | Task | Performance | FPS | Parameters |
---|---|---|---|---|---|---|
BEVANet-S | imagenet-bevanet-s |
ImageNet | Classification | 71.1% Top-1 | 198.6 | 16.3M |
BEVANet | imagenet-bevanet |
ImageNet | Classification | 76.3% Top-1 | 82.3 | 57.4M |
BEVANet-S | cityscapes-bevanet-s |
Cityscapes | Segmentation | 78.2% mIoU | 70.0 | 15.2M |
BEVANet | main |
Cityscapes | Segmentation | 81.0% mIoU | 32.8 | 58.6M |
BEVANet-S | camvid-bevanet-s |
CamVid | Segmentation | 83.1% mIoU | 79.4 | 15.2M |
BEVANet | ade20k-bevanet |
ADE20K | Segmentation | 39.8% mIoU | 73.3 | 58.9M |
Citation
If you use this model, please cite:
@inproceedings{huang2025bevanet,
title={Bevanet: Bilateral Efficient Visual Attention Network for Real-Time Semantic Segmentation},
author={Huang, Ping-Mao and Chao, I-Tien and Huang, Ping-Chia and Liao, Jia-Wei and Chuang, Yung-Yu},
booktitle={2025 IEEE International Conference on Image Processing (ICIP)},
pages={2778--2783},
year={2025},
organization={IEEE}
}
- Downloads last month
- 337