BEVANet: Bilateral Efficient Visual Attention Network for Real-Time Semantic Segmentation (ICIP 2025 spotlight)

arXiv paper ICIP paper GitHub Code License: MIT

Ping-Mao Huang, I-Tien Chao, Ping-Chia Huang, Jia-Wei Liao, Yung-Yu Chuang
National Taiwan University

Model Description

  • Task: Real-Time Semantic Segmentation
  • Dataset: Cityscapes
  • Model: BEVANet

BEVANet semantic segmentation model trained on Cityscapes dataset. Achieves 81.0% mIoU with 32.8 FPS on RTX3090.

Performance

  • mIoU: 81.0%
  • FPS: 32.8 (RTX3090)
  • Parameters: 58.6M

Usage

from models.BEVANet import BEVANet_SEG

# Load model from specific branch
model = BEVANet_SEG.from_pretrained(
    "maomao0819/BEVANet", 
    revision="main"
)

# For main branch (no revision needed)
# model = BEVANet_SEG.from_pretrained("maomao0819/BEVANet")

All Model Variants

Model Branch Dataset Task Performance FPS Parameters
BEVANet-S imagenet-bevanet-s ImageNet Classification 71.1% Top-1 198.6 16.3M
BEVANet imagenet-bevanet ImageNet Classification 76.3% Top-1 82.3 57.4M
BEVANet-S cityscapes-bevanet-s Cityscapes Segmentation 78.2% mIoU 70.0 15.2M
BEVANet main Cityscapes Segmentation 81.0% mIoU 32.8 58.6M
BEVANet-S camvid-bevanet-s CamVid Segmentation 83.1% mIoU 79.4 15.2M
BEVANet ade20k-bevanet ADE20K Segmentation 39.8% mIoU 73.3 58.9M

Citation

If you use this model, please cite:

@inproceedings{huang2025bevanet,
  title={Bevanet: Bilateral Efficient Visual Attention Network for Real-Time Semantic Segmentation},
  author={Huang, Ping-Mao and Chao, I-Tien and Huang, Ping-Chia and Liao, Jia-Wei and Chuang, Yung-Yu},
  booktitle={2025 IEEE International Conference on Image Processing (ICIP)},
  pages={2778--2783},
  year={2025},
  organization={IEEE}
}
Downloads last month
337
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support