LongCat-Image

Introduction

We introduce LongCat-Image, a pioneering open-source and bilingual (Chinese-English) foundation model for image generation, designed to address core challenges in multilingual text rendering, photorealism, deployment efficiency, and developer accessibility prevalent in current leading models.

LongCat-Image Generation Examples

Key Features

  • 🌟 Exceptional Efficiency and Performance: With only 6B parameters, LongCat-Image surpasses numerous open-source models that are several times larger across multiple benchmarks, demonstrating the immense potential of efficient model design.
  • 🌟 Powerful Chinese Text Rendering: LongCat-Image demonstrates superior accuracy and stability in rendering common Chinese characters compared to existing SOTA open-source models and achieves industry-leading coverage of the Chinese dictionary.
  • 🌟 Remarkable Photorealism: Through an innovative data strategy and training framework, LongCat-Image achieves remarkable photorealism in generated images.

🎨 Showcase

LongCat-Image Generation Examples

Quick Start

Installation

Clone the repo:

git clone --single-branch --branch main https://github.com/meituan-longcat/LongCat-Image
cd LongCat-Image

Install dependencies:

# create conda environment
conda create -n longcat-image python=3.10
conda activate longcat-image

# install other requirements
pip install -r requirements.txt
python setup.py develop

Run Text-to-Image Generation

💡 Tip: Using a stronger LLM model for prompt engineering can further improve image generation quality. Please refer to inference_t2i.py for detailed usage.

import torch
from transformers import AutoProcessor
from longcat_image.models import LongCatImageTransformer2DModel
from longcat_image.pipelines import LongCatImagePipeline

device = torch.device('cuda')
checkpoint_dir = './weights/LongCat-Image'

text_processor = AutoProcessor.from_pretrained( checkpoint_dir, subfolder = 'tokenizer'  )
transformer = LongCatImageTransformer2DModel.from_pretrained( checkpoint_dir , subfolder = 'transformer', 
    torch_dtype=torch.bfloat16, use_safetensors=True).to(device)

pipe = LongCatImagePipeline.from_pretrained(
    checkpoint_dir,
    transformer=transformer,
    text_processor=text_processor
)
pipe.to(device, torch.bfloat16)

prompt = '一个年轻的亚裔女性,身穿黄色针织衫,搭配白色项链。她的双手放在膝盖上,表情恬静。背景是一堵粗糙的砖墙,午后的阳光温暖地洒在她身上,营造出一种宁静而温馨的氛围。镜头采用中距离视角,突出她的神态和服饰的细节。光线柔和地打在她的脸上,强调她的五官和饰品的质感,增加画面的层次感与亲和力。整个画面构图简洁,砖墙的纹理与阳光的光影效果相得益彰,突显出人物的优雅与从容。'

image = pipe(
    prompt,
    height=768,
    width=1344,
    guidance_scale=4.5,
    num_inference_steps=50,
    num_images_per_prompt=1,
    generator=torch.Generator("cpu").manual_seed(43),
    enable_cfg_renorm=True,
    enable_prompt_rewrite=True # Reusing the text encoder as a built-in prompt rewriter
).images[0]
image.save('./t2i_example.png')
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for meituan-longcat/LongCat-Image

Quantizations
1 model

Space using meituan-longcat/LongCat-Image 1