|
--- |
|
base_model: Hello-SimpleAI/chatgpt-detector-roberta |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
- precision |
|
- recall |
|
- f1 |
|
model-index: |
|
- name: ai-detect-6 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# ai-detect-6 |
|
|
|
This model is a fine-tuned version of [Hello-SimpleAI/chatgpt-detector-roberta](https://huggingface.co/Hello-SimpleAI/chatgpt-detector-roberta) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.4830 |
|
- Accuracy: 0.9396 |
|
- Precision: 0.9223 |
|
- Recall: 0.9866 |
|
- F1: 0.9534 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 10 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |
|
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:---------:|:------:|:------:| |
|
| 0.216 | 1.0 | 6250 | 0.4401 | 0.8916 | 0.8572 | 0.9920 | 0.9197 | |
|
| 0.1277 | 2.0 | 12500 | 0.2963 | 0.928 | 0.9093 | 0.9831 | 0.9447 | |
|
| 0.0858 | 3.0 | 18750 | 0.3475 | 0.9236 | 0.8993 | 0.9887 | 0.9418 | |
|
| 0.0647 | 4.0 | 25000 | 0.2927 | 0.9404 | 0.9252 | 0.9843 | 0.9539 | |
|
| 0.0798 | 5.0 | 31250 | 0.3095 | 0.9424 | 0.9282 | 0.9840 | 0.9553 | |
|
| 0.0392 | 6.0 | 37500 | 0.4386 | 0.9401 | 0.9214 | 0.9887 | 0.9538 | |
|
| 0.0433 | 7.0 | 43750 | 0.4830 | 0.9396 | 0.9223 | 0.9866 | 0.9534 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.38.2 |
|
- Pytorch 2.2.1+cu121 |
|
- Datasets 3.0.1 |
|
- Tokenizers 0.15.2 |
|
|