|
import os
|
|
import tensorflow as tf
|
|
from tensorflow import keras
|
|
from keras import layers
|
|
from tensorflow.keras.preprocessing.image import ImageDataGenerator
|
|
import numpy as np
|
|
from PIL import Image
|
|
|
|
def create_model(input_shape=(32, 32, 3)):
|
|
"""Create and return a CNN model for binary image classification."""
|
|
model = keras.Sequential([
|
|
layers.Input(shape=input_shape),
|
|
layers.Conv2D(32, (3, 3), activation='relu'),
|
|
layers.MaxPooling2D((2, 2)),
|
|
layers.Conv2D(64, (3, 3), activation='relu'),
|
|
layers.MaxPooling2D((2, 2)),
|
|
layers.Conv2D(128, (3, 3), activation='relu'),
|
|
layers.MaxPooling2D((2, 2)),
|
|
layers.Flatten(),
|
|
layers.Dense(128, activation='relu'),
|
|
layers.Dense(1, activation='sigmoid')
|
|
])
|
|
|
|
|
|
model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])
|
|
return model
|
|
|
|
def train_model(batch_size=32, epochs=8):
|
|
"""Train the model and save it."""
|
|
|
|
datagen = ImageDataGenerator(
|
|
rescale=1.0 / 255,
|
|
validation_split=0.2,
|
|
rotation_range=20,
|
|
width_shift_range=0.2,
|
|
height_shift_range=0.2,
|
|
shear_range=0.2,
|
|
zoom_range=0.2,
|
|
horizontal_flip=True
|
|
)
|
|
|
|
train_generator = datagen.flow_from_directory(
|
|
directory='archive/train',
|
|
target_size=(32, 32),
|
|
batch_size=batch_size,
|
|
class_mode='binary',
|
|
subset='training'
|
|
)
|
|
|
|
validation_generator = datagen.flow_from_directory(
|
|
directory='archive/train',
|
|
target_size=(32, 32),
|
|
batch_size=batch_size,
|
|
class_mode='binary',
|
|
subset='validation'
|
|
)
|
|
|
|
|
|
model = create_model()
|
|
|
|
|
|
early_stopping = keras.callbacks.EarlyStopping(
|
|
monitor='val_loss',
|
|
patience=3,
|
|
restore_best_weights=True
|
|
)
|
|
|
|
|
|
history = model.fit(
|
|
train_generator,
|
|
validation_data=validation_generator,
|
|
epochs=epochs,
|
|
callbacks=[early_stopping]
|
|
)
|
|
|
|
|
|
test_loss, test_acc = model.evaluate(validation_generator)
|
|
print(f'Test accuracy: {test_acc:.4f}')
|
|
|
|
|
|
model.save('trained_model.keras')
|
|
print("Model saved as 'trained_model.keras'")
|
|
|
|
return model, history
|
|
|
|
def load_and_preprocess_image(image_path, target_size=(32, 32)):
|
|
"""Load and preprocess an image for prediction."""
|
|
try:
|
|
img = Image.open(image_path)
|
|
img = img.resize(target_size)
|
|
img = img.convert('RGB')
|
|
img_array = np.array(img) / 255.0
|
|
return np.expand_dims(img_array, axis=0)
|
|
except Exception as e:
|
|
print(f"Error processing image: {e}")
|
|
return None
|
|
|
|
def test_model(model_path='trained_model.keras'):
|
|
"""Load a trained model and use it to classify an image."""
|
|
try:
|
|
|
|
model = tf.keras.models.load_model(model_path)
|
|
except Exception as e:
|
|
print(f"Error loading model: {e}")
|
|
return
|
|
|
|
|
|
image_path = input('Enter the path to the image you want to test: ')
|
|
|
|
if not os.path.isfile(image_path):
|
|
print("Invalid path, please enter a valid path to an image.")
|
|
return
|
|
|
|
|
|
input_image = load_and_preprocess_image(image_path)
|
|
if input_image is None:
|
|
return
|
|
|
|
|
|
prediction = model.predict(input_image, verbose=0)
|
|
|
|
|
|
threshold = 0.5
|
|
|
|
|
|
classification = "REAL" if prediction[0][0] > threshold else "FAKE"
|
|
confidence = prediction[0][0] if prediction[0][0] > threshold else 1 - prediction[0][0]
|
|
|
|
|
|
print(f"Classification: {classification}")
|
|
print(f"Confidence: {confidence * 100:.2f}%")
|
|
print(f"Raw prediction value: {prediction[0][0]:.4f}")
|
|
|
|
def main():
|
|
"""Main function to run the program."""
|
|
|
|
gpus = tf.config.experimental.list_physical_devices('GPU')
|
|
if gpus:
|
|
try:
|
|
for gpu in gpus:
|
|
tf.config.experimental.set_memory_growth(gpu, True)
|
|
except RuntimeError as e:
|
|
print(f"Error setting memory growth: {e}")
|
|
|
|
|
|
batch_size = 32
|
|
epochs = 10
|
|
|
|
while True:
|
|
activation_mode = input('Select mode (train/test/exit): ').lower()
|
|
|
|
if activation_mode == 'train':
|
|
train_model(batch_size, epochs)
|
|
elif activation_mode == 'test':
|
|
test_model()
|
|
elif activation_mode == 'exit':
|
|
print("Exiting program.")
|
|
break
|
|
else:
|
|
print('Invalid mode, please select "train", "test", or "exit"')
|
|
|
|
if __name__ == "__main__":
|
|
main() |