SetFit with mini1013/master_domain
This is a SetFit model that can be used for Text Classification. This SetFit model uses mini1013/master_domain as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
Model Details
Model Description
Model Sources
Model Labels
Label |
Examples |
0.0 |
- '[한국표준금거래소] 999.9‰순금 골드바 11.25g 쇼핑백X (주)한국표준거래소'
- '한국금거래소 순금 꽃다발 골드바 0.2g 기본 종이 케이스 한국금거래소디지털에셋'
- '한국금거래소 순금 비상금 통장 골드바 1g 주식회사 한국금거래소디지털에셋'
|
1.0 |
- '[한국금거래소]한국금거래소 순금 복주머니 3.75g 롯데아이몰'
- '[한국금거래소] 어락도 금수저 카드 3.75g 주식회사 한국금거래소디지털에셋'
- '순금거북이 37.5g 종로골드'
|
2.0 |
- '[한국금거래소] 실버바 100g 은테크 은투자 은시세 생일 기념일 축하 선물 주식회사 한국금거래소디지털에셋'
- '[100g 실버바] 한국금거래소 99.99% 투자용 은괴 주식회사 골드나라'
- '[삼성금거래소]Silver Bar(실버바)100g AKmall'
|
Evaluation
Metrics
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
model = SetFitModel.from_pretrained("mini1013/master_cate_ac5")
preds = model("순금뱃지 1.875g 기업 회사 은행 병원 대학교 금뱃지 2.금형추가 투자골드")
Training Details
Training Set Metrics
Training set |
Min |
Median |
Max |
Word count |
4 |
7.7583 |
17 |
Label |
Training Sample Count |
0.0 |
50 |
1.0 |
50 |
2.0 |
20 |
Training Hyperparameters
- batch_size: (512, 512)
- num_epochs: (20, 20)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 40
- body_learning_rate: (2e-05, 2e-05)
- head_learning_rate: 2e-05
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
Training Results
Epoch |
Step |
Training Loss |
Validation Loss |
0.0526 |
1 |
0.4971 |
- |
2.6316 |
50 |
0.0373 |
- |
5.2632 |
100 |
0.0001 |
- |
7.8947 |
150 |
0.0 |
- |
10.5263 |
200 |
0.0 |
- |
13.1579 |
250 |
0.0 |
- |
15.7895 |
300 |
0.0 |
- |
18.4211 |
350 |
0.0 |
- |
Framework Versions
- Python: 3.10.12
- SetFit: 1.1.0.dev0
- Sentence Transformers: 3.1.1
- Transformers: 4.46.1
- PyTorch: 2.4.0+cu121
- Datasets: 2.20.0
- Tokenizers: 0.20.0
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}