SetFit with mini1013/master_domain
This is a SetFit model that can be used for Text Classification. This SetFit model uses mini1013/master_domain as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
Model Details
Model Description
Model Sources
Model Labels
Label |
Examples |
1.0 |
- '로얄워터 블랑쉬 코튼 비누향 베이비파우더 살냄새 수제 승무원 엑스트레 드 퍼퓸 30ml 24. 블루밍 (판매 1위) 주식회사 로얄워터'
- '블루 드 샤넬 빠르펭 50ML 옵션없음 플로라 무역'
- '딥티크 뗌포 오드 퍼퓸 75ml 옵션없음 대박컴퍼니'
|
0.0 |
- '쿨티 - 스틸레 룸 디퓨저 - 린파 500ml/16.9oz 스트로베리넷 (홍콩)'
- '소소모소 디퓨저리필 500ml_코튼브리즈 _salestrNo:2439_지점명:emartNE.O.001 (주)리빙탑스/해당사항 없음'
- '디퓨저 섬유 리드스틱 화이트 50개입 디퓨저 섬유 옵션없음 '
|
2.0 |
- '인센스 스틱 홀더 접시형 그린 (WC9C73F) 본상품선택 기타/해당사항 없음'
- '인센스홀더향 향꽂이 홀더 물방울 인테리어 인센스 (WD2F3FF) 본상품선택 기타/해당사항 없음'
- '인센스 홀더 미니화병 황동 향 피우기 나그참파 꽂이 (WBC1E2F) 본상품선택 기타/해당사항 없음'
|
Evaluation
Metrics
Label |
Accuracy |
all |
0.9578 |
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
model = SetFitModel.from_pretrained("mini1013/master_cate_bt10_test")
preds = model("에르메스 떼르 데르메스EDT 50ml 옵션없음 주식회사 비엘컴퍼니")
Training Details
Training Set Metrics
Training set |
Min |
Median |
Max |
Word count |
5 |
9.4127 |
18 |
Label |
Training Sample Count |
0.0 |
20 |
1.0 |
23 |
2.0 |
20 |
Training Hyperparameters
- batch_size: (512, 512)
- num_epochs: (50, 50)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 60
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- l2_weight: 0.01
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
Training Results
Epoch |
Step |
Training Loss |
Validation Loss |
0.125 |
1 |
0.4915 |
- |
6.25 |
50 |
0.1556 |
- |
12.5 |
100 |
0.0 |
- |
18.75 |
150 |
0.0 |
- |
25.0 |
200 |
0.0 |
- |
31.25 |
250 |
0.0 |
- |
37.5 |
300 |
0.0 |
- |
43.75 |
350 |
0.0 |
- |
50.0 |
400 |
0.0 |
- |
Framework Versions
- Python: 3.10.12
- SetFit: 1.1.0
- Sentence Transformers: 3.3.1
- Transformers: 4.44.2
- PyTorch: 2.2.0a0+81ea7a4
- Datasets: 3.2.0
- Tokenizers: 0.19.1
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}