SetFit with mini1013/master_domain
This is a SetFit model that can be used for Text Classification. This SetFit model uses mini1013/master_domain as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
Model Details
Model Description
Model Sources
Model Labels
Label |
Examples |
3 |
- '트리플에스 대용량 약산성 탈모샴푸 1350ml/세트구성 탈모샴푸 580ml+580ml+무료증정(5ml 10개) 쇼킹딜 홈>뷰티>헤어>샴푸/린스/기능성;11st>뷰티>헤어>샴푸/린스/기능성;(#M)11st>헤어케어>샴푸>일반 11st > 뷰티 > 헤어케어 > 샴푸'
- '닥터방기원 랩샴푸 탈모샴푸 1L x 3개 (#M)헤어케어>샴푸>샴푸바 AD > 11st > 뷰티 > 헤어케어 > 샴푸 > 샴푸바'
- '[메디올]탈모완화 우디향 샴푸/두피청정 퓨리파잉 샴푸/트리트먼트/헤어케어 15.퓨리파잉 샴푸 480ml 2개_+블루퓨리파잉샴푸 100ml 1개+시트 트먼 50ml 1개 (#M)헤어케어>샴푸>샴푸바 11st Hour Event > 패션/뷰티 > 뷰티 > 헤어 > 샴푸/린스/기능성'
|
0 |
- '[본사직영] 떡진머리 드라이 파우더 (#M)위메프 > 생활·주방용품 > 바디/헤어 > 바디로션/핸드/풋 > 바디보습 위메프 > 뷰티 > 바디/헤어 > 바디로션/핸드/풋 > 바디보습'
- '[코랩][3개세트] 코랩 비건 헤어 드라이샴푸 200ml (6종 택1, 교차선택 가능) 파라다이스_프레쉬_트로피컬 (#M)11st>헤어케어>샴푸>일반 11st > 뷰티 > 헤어케어 > 샴푸'
- '르네휘테르 나뚜리아 인비저블 드라이 샴푸 200ml (#M)화장품/미용>헤어케어>샴푸 AD > traverse > Naverstore > 화장품/미용 > 헤어케어 > 샴푸 > 드라이샴푸'
|
2 |
- '미쟝센 퍼펙트세럼 샴푸/컨디셔너 680ml 2입 모음 09__슈퍼리치 샴푸1입+컨디셔너1입 ssg > 뷰티 > 헤어/바디 > 헤어케어 > 헤어트리트먼트;ssg > 뷰티 > 헤어/바디 > 헤어케어 > 샴푸;ssg > 뷰티 > 헤어/바디 > 헤어케어 ssg > 뷰티 > 헤어/바디 > 헤어케어 > 린스/컨디셔너'
- '[대용량 퍼퓸] 수오가닉 대용량 약산성 아로마 퍼퓸 샴푸워시 1000ml 5개 옵션 5개 선택 해주세요_샴푸워시 오스만투스 1000ml (#M)화장품/미용>헤어케어>샴푸 AD > Naverstore > 화장품/미용 > 헤어케어 > 샴푸 > 약산성샴푸'
- '발샴푸 300ml 공식수입정품 발냄새 발전용 (#M)SSG.COM/헤어/바디/바디케어/풋케어 ssg > 뷰티 > 헤어/바디 > 바디케어 > 풋케어'
|
1 |
- '삼쩜오 저탄소 샴푸바만들기 (교육용) 100g 1개분량 샴푸바 키트 1인 키트 파란색_레몬그라스 (#M)화장품/미용>헤어케어>샴푸 AD > traverse > Naverstore > 화장품/미용 > 헤어케어 > 샴푸 > 샴푸바'
- '오디샤 저자극 약산성 천연 다시마추출물 샴푸바 더퓨어 120g (#M)화장품/미용>헤어케어>샴푸 Naverstore > 화장품/미용 > 헤어케어 > 샴푸 > 샴푸바'
- '솝퓨리 커스텀 세트 노세범 샴푸바_안티로스 샴푸바_네버드라이 페이셜&바디바 (#M)화장품/미용>헤어케어>샴푸 AD > Naverstore > 화장품/미용 > 헤어케어 > 샴푸 > 샴푸바'
|
Evaluation
Metrics
Label |
Accuracy |
all |
0.8368 |
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
model = SetFitModel.from_pretrained("mini1013/master_cate_top_bt13_3_test_flat")
preds = model("쿤달 딥 클렌징 지성샴푸 500ml ★신향★일랑일랑 (#M)홈>헤어>샴푸 Naverstore > 화장품/미용 > 헤어케어 > 샴푸")
Training Details
Training Set Metrics
Training set |
Min |
Median |
Max |
Word count |
13 |
21.665 |
44 |
Label |
Training Sample Count |
0 |
50 |
1 |
50 |
2 |
50 |
3 |
50 |
Training Hyperparameters
- batch_size: (64, 64)
- num_epochs: (30, 30)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 100
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- l2_weight: 0.01
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
Training Results
Epoch |
Step |
Training Loss |
Validation Loss |
0.0032 |
1 |
0.4592 |
- |
0.1597 |
50 |
0.3966 |
- |
0.3195 |
100 |
0.3419 |
- |
0.4792 |
150 |
0.2777 |
- |
0.6390 |
200 |
0.2014 |
- |
0.7987 |
250 |
0.1159 |
- |
0.9585 |
300 |
0.06 |
- |
1.1182 |
350 |
0.0152 |
- |
1.2780 |
400 |
0.0032 |
- |
1.4377 |
450 |
0.0016 |
- |
1.5974 |
500 |
0.0009 |
- |
1.7572 |
550 |
0.0005 |
- |
1.9169 |
600 |
0.0004 |
- |
2.0767 |
650 |
0.0002 |
- |
2.2364 |
700 |
0.0002 |
- |
2.3962 |
750 |
0.0001 |
- |
2.5559 |
800 |
0.0001 |
- |
2.7157 |
850 |
0.0001 |
- |
2.8754 |
900 |
0.0001 |
- |
3.0351 |
950 |
0.0 |
- |
3.1949 |
1000 |
0.0 |
- |
3.3546 |
1050 |
0.0 |
- |
3.5144 |
1100 |
0.0 |
- |
3.6741 |
1150 |
0.0 |
- |
3.8339 |
1200 |
0.0 |
- |
3.9936 |
1250 |
0.0 |
- |
4.1534 |
1300 |
0.0 |
- |
4.3131 |
1350 |
0.0 |
- |
4.4728 |
1400 |
0.0 |
- |
4.6326 |
1450 |
0.0 |
- |
4.7923 |
1500 |
0.0 |
- |
4.9521 |
1550 |
0.0 |
- |
5.1118 |
1600 |
0.0 |
- |
5.2716 |
1650 |
0.0 |
- |
5.4313 |
1700 |
0.0 |
- |
5.5911 |
1750 |
0.0 |
- |
5.7508 |
1800 |
0.0 |
- |
5.9105 |
1850 |
0.0 |
- |
6.0703 |
1900 |
0.0 |
- |
6.2300 |
1950 |
0.0 |
- |
6.3898 |
2000 |
0.0 |
- |
6.5495 |
2050 |
0.0 |
- |
6.7093 |
2100 |
0.0 |
- |
6.8690 |
2150 |
0.0 |
- |
7.0288 |
2200 |
0.0 |
- |
7.1885 |
2250 |
0.0 |
- |
7.3482 |
2300 |
0.0 |
- |
7.5080 |
2350 |
0.0 |
- |
7.6677 |
2400 |
0.0 |
- |
7.8275 |
2450 |
0.0 |
- |
7.9872 |
2500 |
0.0 |
- |
8.1470 |
2550 |
0.0 |
- |
8.3067 |
2600 |
0.0 |
- |
8.4665 |
2650 |
0.0 |
- |
8.6262 |
2700 |
0.0 |
- |
8.7859 |
2750 |
0.0 |
- |
8.9457 |
2800 |
0.0 |
- |
9.1054 |
2850 |
0.0 |
- |
9.2652 |
2900 |
0.0 |
- |
9.4249 |
2950 |
0.0 |
- |
9.5847 |
3000 |
0.0 |
- |
9.7444 |
3050 |
0.0 |
- |
9.9042 |
3100 |
0.0 |
- |
10.0639 |
3150 |
0.0 |
- |
10.2236 |
3200 |
0.0 |
- |
10.3834 |
3250 |
0.0 |
- |
10.5431 |
3300 |
0.0 |
- |
10.7029 |
3350 |
0.0 |
- |
10.8626 |
3400 |
0.0 |
- |
11.0224 |
3450 |
0.0 |
- |
11.1821 |
3500 |
0.0 |
- |
11.3419 |
3550 |
0.0 |
- |
11.5016 |
3600 |
0.0 |
- |
11.6613 |
3650 |
0.0 |
- |
11.8211 |
3700 |
0.0 |
- |
11.9808 |
3750 |
0.0 |
- |
12.1406 |
3800 |
0.0 |
- |
12.3003 |
3850 |
0.0 |
- |
12.4601 |
3900 |
0.0 |
- |
12.6198 |
3950 |
0.0 |
- |
12.7796 |
4000 |
0.0017 |
- |
12.9393 |
4050 |
0.0052 |
- |
13.0990 |
4100 |
0.0005 |
- |
13.2588 |
4150 |
0.0 |
- |
13.4185 |
4200 |
0.0 |
- |
13.5783 |
4250 |
0.0 |
- |
13.7380 |
4300 |
0.0002 |
- |
13.8978 |
4350 |
0.0 |
- |
14.0575 |
4400 |
0.0 |
- |
14.2173 |
4450 |
0.0 |
- |
14.3770 |
4500 |
0.0 |
- |
14.5367 |
4550 |
0.0 |
- |
14.6965 |
4600 |
0.0 |
- |
14.8562 |
4650 |
0.0 |
- |
15.0160 |
4700 |
0.0 |
- |
15.1757 |
4750 |
0.0 |
- |
15.3355 |
4800 |
0.0 |
- |
15.4952 |
4850 |
0.0 |
- |
15.6550 |
4900 |
0.0 |
- |
15.8147 |
4950 |
0.0 |
- |
15.9744 |
5000 |
0.0 |
- |
16.1342 |
5050 |
0.0 |
- |
16.2939 |
5100 |
0.0 |
- |
16.4537 |
5150 |
0.0 |
- |
16.6134 |
5200 |
0.0 |
- |
16.7732 |
5250 |
0.0 |
- |
16.9329 |
5300 |
0.0 |
- |
17.0927 |
5350 |
0.0 |
- |
17.2524 |
5400 |
0.0 |
- |
17.4121 |
5450 |
0.0 |
- |
17.5719 |
5500 |
0.0 |
- |
17.7316 |
5550 |
0.0 |
- |
17.8914 |
5600 |
0.0 |
- |
18.0511 |
5650 |
0.0 |
- |
18.2109 |
5700 |
0.0 |
- |
18.3706 |
5750 |
0.0 |
- |
18.5304 |
5800 |
0.0 |
- |
18.6901 |
5850 |
0.0 |
- |
18.8498 |
5900 |
0.0 |
- |
19.0096 |
5950 |
0.0 |
- |
19.1693 |
6000 |
0.0 |
- |
19.3291 |
6050 |
0.0 |
- |
19.4888 |
6100 |
0.0 |
- |
19.6486 |
6150 |
0.0 |
- |
19.8083 |
6200 |
0.0 |
- |
19.9681 |
6250 |
0.0 |
- |
20.1278 |
6300 |
0.0 |
- |
20.2875 |
6350 |
0.0 |
- |
20.4473 |
6400 |
0.0 |
- |
20.6070 |
6450 |
0.0 |
- |
20.7668 |
6500 |
0.0 |
- |
20.9265 |
6550 |
0.0 |
- |
21.0863 |
6600 |
0.0 |
- |
21.2460 |
6650 |
0.0 |
- |
21.4058 |
6700 |
0.0 |
- |
21.5655 |
6750 |
0.0 |
- |
21.7252 |
6800 |
0.0 |
- |
21.8850 |
6850 |
0.0 |
- |
22.0447 |
6900 |
0.0 |
- |
22.2045 |
6950 |
0.0 |
- |
22.3642 |
7000 |
0.0 |
- |
22.5240 |
7050 |
0.0 |
- |
22.6837 |
7100 |
0.0 |
- |
22.8435 |
7150 |
0.0 |
- |
23.0032 |
7200 |
0.0 |
- |
23.1629 |
7250 |
0.0 |
- |
23.3227 |
7300 |
0.0 |
- |
23.4824 |
7350 |
0.0 |
- |
23.6422 |
7400 |
0.0 |
- |
23.8019 |
7450 |
0.0 |
- |
23.9617 |
7500 |
0.0 |
- |
24.1214 |
7550 |
0.0 |
- |
24.2812 |
7600 |
0.0 |
- |
24.4409 |
7650 |
0.0 |
- |
24.6006 |
7700 |
0.0 |
- |
24.7604 |
7750 |
0.0 |
- |
24.9201 |
7800 |
0.0 |
- |
25.0799 |
7850 |
0.0 |
- |
25.2396 |
7900 |
0.0 |
- |
25.3994 |
7950 |
0.0 |
- |
25.5591 |
8000 |
0.0 |
- |
25.7188 |
8050 |
0.0 |
- |
25.8786 |
8100 |
0.0 |
- |
26.0383 |
8150 |
0.0 |
- |
26.1981 |
8200 |
0.0 |
- |
26.3578 |
8250 |
0.0 |
- |
26.5176 |
8300 |
0.0 |
- |
26.6773 |
8350 |
0.0 |
- |
26.8371 |
8400 |
0.0 |
- |
26.9968 |
8450 |
0.0 |
- |
27.1565 |
8500 |
0.0 |
- |
27.3163 |
8550 |
0.0 |
- |
27.4760 |
8600 |
0.0 |
- |
27.6358 |
8650 |
0.0 |
- |
27.7955 |
8700 |
0.0 |
- |
27.9553 |
8750 |
0.0 |
- |
28.1150 |
8800 |
0.0 |
- |
28.2748 |
8850 |
0.0 |
- |
28.4345 |
8900 |
0.0 |
- |
28.5942 |
8950 |
0.0 |
- |
28.7540 |
9000 |
0.0 |
- |
28.9137 |
9050 |
0.0 |
- |
29.0735 |
9100 |
0.0001 |
- |
29.2332 |
9150 |
0.0 |
- |
29.3930 |
9200 |
0.0 |
- |
29.5527 |
9250 |
0.0 |
- |
29.7125 |
9300 |
0.0 |
- |
29.8722 |
9350 |
0.0 |
- |
Framework Versions
- Python: 3.10.12
- SetFit: 1.1.0
- Sentence Transformers: 3.3.1
- Transformers: 4.44.2
- PyTorch: 2.2.0a0+81ea7a4
- Datasets: 3.2.0
- Tokenizers: 0.19.1
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}