bclavie's picture
Pre-release
bcbc6de
|
raw
history blame
68.5 kB
metadata
language:
  - en
tags:
  - ColBERT
  - PyLate
  - sentence-transformers
  - sentence-similarity
  - feature-extraction
  - generated_from_trainer
  - transformers
pipeline_tag: sentence-similarity
library_name: PyLate
metrics:
  - MaxSim_accuracy@1
  - MaxSim_accuracy@3
  - MaxSim_accuracy@5
  - MaxSim_accuracy@10
  - MaxSim_precision@1
  - MaxSim_precision@3
  - MaxSim_precision@5
  - MaxSim_precision@10
  - MaxSim_recall@1
  - MaxSim_recall@3
  - MaxSim_recall@5
  - MaxSim_recall@10
  - MaxSim_ndcg@10
  - MaxSim_mrr@10
  - MaxSim_map@100
model-index:
  - name: mxbai-edge-colbert-v0-17m
    results:
      - task:
          type: py-late-information-retrieval
          name: Py Late Information Retrieval
        dataset:
          name: NanoClimateFEVER
          type: NanoClimateFEVER
        metrics:
          - type: MaxSim_accuracy@1
            value: 0.28
            name: Maxsim Accuracy@1
          - type: MaxSim_accuracy@3
            value: 0.4
            name: Maxsim Accuracy@3
          - type: MaxSim_accuracy@5
            value: 0.52
            name: Maxsim Accuracy@5
          - type: MaxSim_accuracy@10
            value: 0.76
            name: Maxsim Accuracy@10
          - type: MaxSim_precision@1
            value: 0.28
            name: Maxsim Precision@1
          - type: MaxSim_precision@3
            value: 0.15333333333333332
            name: Maxsim Precision@3
          - type: MaxSim_precision@5
            value: 0.132
            name: Maxsim Precision@5
          - type: MaxSim_precision@10
            value: 0.114
            name: Maxsim Precision@10
          - type: MaxSim_recall@1
            value: 0.13166666666666665
            name: Maxsim Recall@1
          - type: MaxSim_recall@3
            value: 0.19566666666666666
            name: Maxsim Recall@3
          - type: MaxSim_recall@5
            value: 0.26899999999999996
            name: Maxsim Recall@5
          - type: MaxSim_recall@10
            value: 0.4323333333333333
            name: Maxsim Recall@10
          - type: MaxSim_ndcg@10
            value: 0.32110454808344563
            name: Maxsim Ndcg@10
          - type: MaxSim_mrr@10
            value: 0.3874603174603174
            name: Maxsim Mrr@10
          - type: MaxSim_map@100
            value: 0.24386041506572398
            name: Maxsim Map@100
      - task:
          type: py-late-information-retrieval
          name: Py Late Information Retrieval
        dataset:
          name: NanoDBPedia
          type: NanoDBPedia
        metrics:
          - type: MaxSim_accuracy@1
            value: 0.78
            name: Maxsim Accuracy@1
          - type: MaxSim_accuracy@3
            value: 0.92
            name: Maxsim Accuracy@3
          - type: MaxSim_accuracy@5
            value: 0.94
            name: Maxsim Accuracy@5
          - type: MaxSim_accuracy@10
            value: 0.98
            name: Maxsim Accuracy@10
          - type: MaxSim_precision@1
            value: 0.78
            name: Maxsim Precision@1
          - type: MaxSim_precision@3
            value: 0.6466666666666666
            name: Maxsim Precision@3
          - type: MaxSim_precision@5
            value: 0.6000000000000001
            name: Maxsim Precision@5
          - type: MaxSim_precision@10
            value: 0.53
            name: Maxsim Precision@10
          - type: MaxSim_recall@1
            value: 0.11231081441624795
            name: Maxsim Recall@1
          - type: MaxSim_recall@3
            value: 0.19718498662932682
            name: Maxsim Recall@3
          - type: MaxSim_recall@5
            value: 0.2515039585287889
            name: Maxsim Recall@5
          - type: MaxSim_recall@10
            value: 0.3827585204510568
            name: Maxsim Recall@10
          - type: MaxSim_ndcg@10
            value: 0.6668364782038155
            name: Maxsim Ndcg@10
          - type: MaxSim_mrr@10
            value: 0.8583333333333334
            name: Maxsim Mrr@10
          - type: MaxSim_map@100
            value: 0.532138470469583
            name: Maxsim Map@100
      - task:
          type: py-late-information-retrieval
          name: Py Late Information Retrieval
        dataset:
          name: NanoFEVER
          type: NanoFEVER
        metrics:
          - type: MaxSim_accuracy@1
            value: 0.86
            name: Maxsim Accuracy@1
          - type: MaxSim_accuracy@3
            value: 0.94
            name: Maxsim Accuracy@3
          - type: MaxSim_accuracy@5
            value: 0.98
            name: Maxsim Accuracy@5
          - type: MaxSim_accuracy@10
            value: 1
            name: Maxsim Accuracy@10
          - type: MaxSim_precision@1
            value: 0.86
            name: Maxsim Precision@1
          - type: MaxSim_precision@3
            value: 0.3399999999999999
            name: Maxsim Precision@3
          - type: MaxSim_precision@5
            value: 0.21199999999999997
            name: Maxsim Precision@5
          - type: MaxSim_precision@10
            value: 0.10999999999999999
            name: Maxsim Precision@10
          - type: MaxSim_recall@1
            value: 0.7966666666666667
            name: Maxsim Recall@1
          - type: MaxSim_recall@3
            value: 0.91
            name: Maxsim Recall@3
          - type: MaxSim_recall@5
            value: 0.95
            name: Maxsim Recall@5
          - type: MaxSim_recall@10
            value: 0.98
            name: Maxsim Recall@10
          - type: MaxSim_ndcg@10
            value: 0.9113009102891444
            name: Maxsim Ndcg@10
          - type: MaxSim_mrr@10
            value: 0.9095238095238095
            name: Maxsim Mrr@10
          - type: MaxSim_map@100
            value: 0.8804077380952381
            name: Maxsim Map@100
      - task:
          type: py-late-information-retrieval
          name: Py Late Information Retrieval
        dataset:
          name: NanoFiQA2018
          type: NanoFiQA2018
        metrics:
          - type: MaxSim_accuracy@1
            value: 0.5
            name: Maxsim Accuracy@1
          - type: MaxSim_accuracy@3
            value: 0.64
            name: Maxsim Accuracy@3
          - type: MaxSim_accuracy@5
            value: 0.66
            name: Maxsim Accuracy@5
          - type: MaxSim_accuracy@10
            value: 0.78
            name: Maxsim Accuracy@10
          - type: MaxSim_precision@1
            value: 0.5
            name: Maxsim Precision@1
          - type: MaxSim_precision@3
            value: 0.3
            name: Maxsim Precision@3
          - type: MaxSim_precision@5
            value: 0.22399999999999998
            name: Maxsim Precision@5
          - type: MaxSim_precision@10
            value: 0.13599999999999998
            name: Maxsim Precision@10
          - type: MaxSim_recall@1
            value: 0.28257936507936504
            name: Maxsim Recall@1
          - type: MaxSim_recall@3
            value: 0.45084920634920633
            name: Maxsim Recall@3
          - type: MaxSim_recall@5
            value: 0.5012857142857142
            name: Maxsim Recall@5
          - type: MaxSim_recall@10
            value: 0.5930079365079366
            name: Maxsim Recall@10
          - type: MaxSim_ndcg@10
            value: 0.5242333453411014
            name: Maxsim Ndcg@10
          - type: MaxSim_mrr@10
            value: 0.5883888888888889
            name: Maxsim Mrr@10
          - type: MaxSim_map@100
            value: 0.4663825636525529
            name: Maxsim Map@100
      - task:
          type: py-late-information-retrieval
          name: Py Late Information Retrieval
        dataset:
          name: NanoHotpotQA
          type: NanoHotpotQA
        metrics:
          - type: MaxSim_accuracy@1
            value: 0.94
            name: Maxsim Accuracy@1
          - type: MaxSim_accuracy@3
            value: 1
            name: Maxsim Accuracy@3
          - type: MaxSim_accuracy@5
            value: 1
            name: Maxsim Accuracy@5
          - type: MaxSim_accuracy@10
            value: 1
            name: Maxsim Accuracy@10
          - type: MaxSim_precision@1
            value: 0.94
            name: Maxsim Precision@1
          - type: MaxSim_precision@3
            value: 0.5666666666666667
            name: Maxsim Precision@3
          - type: MaxSim_precision@5
            value: 0.3559999999999999
            name: Maxsim Precision@5
          - type: MaxSim_precision@10
            value: 0.18599999999999994
            name: Maxsim Precision@10
          - type: MaxSim_recall@1
            value: 0.47
            name: Maxsim Recall@1
          - type: MaxSim_recall@3
            value: 0.85
            name: Maxsim Recall@3
          - type: MaxSim_recall@5
            value: 0.89
            name: Maxsim Recall@5
          - type: MaxSim_recall@10
            value: 0.93
            name: Maxsim Recall@10
          - type: MaxSim_ndcg@10
            value: 0.8918313878583112
            name: Maxsim Ndcg@10
          - type: MaxSim_mrr@10
            value: 0.9666666666666666
            name: Maxsim Mrr@10
          - type: MaxSim_map@100
            value: 0.8388140096618357
            name: Maxsim Map@100
      - task:
          type: py-late-information-retrieval
          name: Py Late Information Retrieval
        dataset:
          name: NanoMSMARCO
          type: NanoMSMARCO
        metrics:
          - type: MaxSim_accuracy@1
            value: 0.58
            name: Maxsim Accuracy@1
          - type: MaxSim_accuracy@3
            value: 0.68
            name: Maxsim Accuracy@3
          - type: MaxSim_accuracy@5
            value: 0.74
            name: Maxsim Accuracy@5
          - type: MaxSim_accuracy@10
            value: 0.82
            name: Maxsim Accuracy@10
          - type: MaxSim_precision@1
            value: 0.58
            name: Maxsim Precision@1
          - type: MaxSim_precision@3
            value: 0.22666666666666668
            name: Maxsim Precision@3
          - type: MaxSim_precision@5
            value: 0.14800000000000002
            name: Maxsim Precision@5
          - type: MaxSim_precision@10
            value: 0.08199999999999999
            name: Maxsim Precision@10
          - type: MaxSim_recall@1
            value: 0.58
            name: Maxsim Recall@1
          - type: MaxSim_recall@3
            value: 0.68
            name: Maxsim Recall@3
          - type: MaxSim_recall@5
            value: 0.74
            name: Maxsim Recall@5
          - type: MaxSim_recall@10
            value: 0.82
            name: Maxsim Recall@10
          - type: MaxSim_ndcg@10
            value: 0.6902252545188936
            name: Maxsim Ndcg@10
          - type: MaxSim_mrr@10
            value: 0.6501031746031746
            name: Maxsim Mrr@10
          - type: MaxSim_map@100
            value: 0.6593558218584534
            name: Maxsim Map@100
      - task:
          type: py-late-information-retrieval
          name: Py Late Information Retrieval
        dataset:
          name: NanoNFCorpus
          type: NanoNFCorpus
        metrics:
          - type: MaxSim_accuracy@1
            value: 0.5
            name: Maxsim Accuracy@1
          - type: MaxSim_accuracy@3
            value: 0.6
            name: Maxsim Accuracy@3
          - type: MaxSim_accuracy@5
            value: 0.64
            name: Maxsim Accuracy@5
          - type: MaxSim_accuracy@10
            value: 0.7
            name: Maxsim Accuracy@10
          - type: MaxSim_precision@1
            value: 0.5
            name: Maxsim Precision@1
          - type: MaxSim_precision@3
            value: 0.4
            name: Maxsim Precision@3
          - type: MaxSim_precision@5
            value: 0.3560000000000001
            name: Maxsim Precision@5
          - type: MaxSim_precision@10
            value: 0.28
            name: Maxsim Precision@10
          - type: MaxSim_recall@1
            value: 0.06472705697215374
            name: Maxsim Recall@1
          - type: MaxSim_recall@3
            value: 0.09880268446365006
            name: Maxsim Recall@3
          - type: MaxSim_recall@5
            value: 0.12166169350643057
            name: Maxsim Recall@5
          - type: MaxSim_recall@10
            value: 0.14660598371037648
            name: Maxsim Recall@10
          - type: MaxSim_ndcg@10
            value: 0.3681157447334094
            name: Maxsim Ndcg@10
          - type: MaxSim_mrr@10
            value: 0.5658333333333333
            name: Maxsim Mrr@10
          - type: MaxSim_map@100
            value: 0.17231143133969085
            name: Maxsim Map@100
      - task:
          type: py-late-information-retrieval
          name: Py Late Information Retrieval
        dataset:
          name: NanoNQ
          type: NanoNQ
        metrics:
          - type: MaxSim_accuracy@1
            value: 0.58
            name: Maxsim Accuracy@1
          - type: MaxSim_accuracy@3
            value: 0.72
            name: Maxsim Accuracy@3
          - type: MaxSim_accuracy@5
            value: 0.82
            name: Maxsim Accuracy@5
          - type: MaxSim_accuracy@10
            value: 0.9
            name: Maxsim Accuracy@10
          - type: MaxSim_precision@1
            value: 0.58
            name: Maxsim Precision@1
          - type: MaxSim_precision@3
            value: 0.24
            name: Maxsim Precision@3
          - type: MaxSim_precision@5
            value: 0.17199999999999996
            name: Maxsim Precision@5
          - type: MaxSim_precision@10
            value: 0.09599999999999997
            name: Maxsim Precision@10
          - type: MaxSim_recall@1
            value: 0.55
            name: Maxsim Recall@1
          - type: MaxSim_recall@3
            value: 0.67
            name: Maxsim Recall@3
          - type: MaxSim_recall@5
            value: 0.78
            name: Maxsim Recall@5
          - type: MaxSim_recall@10
            value: 0.86
            name: Maxsim Recall@10
          - type: MaxSim_ndcg@10
            value: 0.7085689105698346
            name: Maxsim Ndcg@10
          - type: MaxSim_mrr@10
            value: 0.6787142857142857
            name: Maxsim Mrr@10
          - type: MaxSim_map@100
            value: 0.6543090180774391
            name: Maxsim Map@100
      - task:
          type: py-late-information-retrieval
          name: Py Late Information Retrieval
        dataset:
          name: NanoQuoraRetrieval
          type: NanoQuoraRetrieval
        metrics:
          - type: MaxSim_accuracy@1
            value: 0.96
            name: Maxsim Accuracy@1
          - type: MaxSim_accuracy@3
            value: 1
            name: Maxsim Accuracy@3
          - type: MaxSim_accuracy@5
            value: 1
            name: Maxsim Accuracy@5
          - type: MaxSim_accuracy@10
            value: 1
            name: Maxsim Accuracy@10
          - type: MaxSim_precision@1
            value: 0.96
            name: Maxsim Precision@1
          - type: MaxSim_precision@3
            value: 0.3933333333333333
            name: Maxsim Precision@3
          - type: MaxSim_precision@5
            value: 0.24799999999999997
            name: Maxsim Precision@5
          - type: MaxSim_precision@10
            value: 0.13199999999999998
            name: Maxsim Precision@10
          - type: MaxSim_recall@1
            value: 0.8373333333333334
            name: Maxsim Recall@1
          - type: MaxSim_recall@3
            value: 0.9486666666666668
            name: Maxsim Recall@3
          - type: MaxSim_recall@5
            value: 0.9626666666666668
            name: Maxsim Recall@5
          - type: MaxSim_recall@10
            value: 0.9833333333333333
            name: Maxsim Recall@10
          - type: MaxSim_ndcg@10
            value: 0.9609623318470277
            name: Maxsim Ndcg@10
          - type: MaxSim_mrr@10
            value: 0.98
            name: Maxsim Mrr@10
          - type: MaxSim_map@100
            value: 0.9420639971139971
            name: Maxsim Map@100
      - task:
          type: py-late-information-retrieval
          name: Py Late Information Retrieval
        dataset:
          name: NanoSCIDOCS
          type: NanoSCIDOCS
        metrics:
          - type: MaxSim_accuracy@1
            value: 0.48
            name: Maxsim Accuracy@1
          - type: MaxSim_accuracy@3
            value: 0.72
            name: Maxsim Accuracy@3
          - type: MaxSim_accuracy@5
            value: 0.76
            name: Maxsim Accuracy@5
          - type: MaxSim_accuracy@10
            value: 0.86
            name: Maxsim Accuracy@10
          - type: MaxSim_precision@1
            value: 0.48
            name: Maxsim Precision@1
          - type: MaxSim_precision@3
            value: 0.35999999999999993
            name: Maxsim Precision@3
          - type: MaxSim_precision@5
            value: 0.284
            name: Maxsim Precision@5
          - type: MaxSim_precision@10
            value: 0.192
            name: Maxsim Precision@10
          - type: MaxSim_recall@1
            value: 0.10166666666666666
            name: Maxsim Recall@1
          - type: MaxSim_recall@3
            value: 0.22166666666666665
            name: Maxsim Recall@3
          - type: MaxSim_recall@5
            value: 0.28966666666666663
            name: Maxsim Recall@5
          - type: MaxSim_recall@10
            value: 0.39166666666666666
            name: Maxsim Recall@10
          - type: MaxSim_ndcg@10
            value: 0.38777798626622473
            name: Maxsim Ndcg@10
          - type: MaxSim_mrr@10
            value: 0.6133809523809525
            name: Maxsim Mrr@10
          - type: MaxSim_map@100
            value: 0.30159944576020853
            name: Maxsim Map@100
      - task:
          type: py-late-information-retrieval
          name: Py Late Information Retrieval
        dataset:
          name: NanoArguAna
          type: NanoArguAna
        metrics:
          - type: MaxSim_accuracy@1
            value: 0.16
            name: Maxsim Accuracy@1
          - type: MaxSim_accuracy@3
            value: 0.5
            name: Maxsim Accuracy@3
          - type: MaxSim_accuracy@5
            value: 0.62
            name: Maxsim Accuracy@5
          - type: MaxSim_accuracy@10
            value: 0.82
            name: Maxsim Accuracy@10
          - type: MaxSim_precision@1
            value: 0.16
            name: Maxsim Precision@1
          - type: MaxSim_precision@3
            value: 0.16666666666666663
            name: Maxsim Precision@3
          - type: MaxSim_precision@5
            value: 0.12400000000000003
            name: Maxsim Precision@5
          - type: MaxSim_precision@10
            value: 0.08199999999999999
            name: Maxsim Precision@10
          - type: MaxSim_recall@1
            value: 0.16
            name: Maxsim Recall@1
          - type: MaxSim_recall@3
            value: 0.5
            name: Maxsim Recall@3
          - type: MaxSim_recall@5
            value: 0.62
            name: Maxsim Recall@5
          - type: MaxSim_recall@10
            value: 0.82
            name: Maxsim Recall@10
          - type: MaxSim_ndcg@10
            value: 0.47567106787289914
            name: Maxsim Ndcg@10
          - type: MaxSim_mrr@10
            value: 0.3671111111111111
            name: Maxsim Mrr@10
          - type: MaxSim_map@100
            value: 0.37145718958470925
            name: Maxsim Map@100
      - task:
          type: py-late-information-retrieval
          name: Py Late Information Retrieval
        dataset:
          name: NanoSciFact
          type: NanoSciFact
        metrics:
          - type: MaxSim_accuracy@1
            value: 0.72
            name: Maxsim Accuracy@1
          - type: MaxSim_accuracy@3
            value: 0.84
            name: Maxsim Accuracy@3
          - type: MaxSim_accuracy@5
            value: 0.84
            name: Maxsim Accuracy@5
          - type: MaxSim_accuracy@10
            value: 0.86
            name: Maxsim Accuracy@10
          - type: MaxSim_precision@1
            value: 0.72
            name: Maxsim Precision@1
          - type: MaxSim_precision@3
            value: 0.29333333333333333
            name: Maxsim Precision@3
          - type: MaxSim_precision@5
            value: 0.18799999999999997
            name: Maxsim Precision@5
          - type: MaxSim_precision@10
            value: 0.09599999999999997
            name: Maxsim Precision@10
          - type: MaxSim_recall@1
            value: 0.695
            name: Maxsim Recall@1
          - type: MaxSim_recall@3
            value: 0.82
            name: Maxsim Recall@3
          - type: MaxSim_recall@5
            value: 0.84
            name: Maxsim Recall@5
          - type: MaxSim_recall@10
            value: 0.85
            name: Maxsim Recall@10
          - type: MaxSim_ndcg@10
            value: 0.7943497079909279
            name: Maxsim Ndcg@10
          - type: MaxSim_mrr@10
            value: 0.7799999999999998
            name: Maxsim Mrr@10
          - type: MaxSim_map@100
            value: 0.7769113522745599
            name: Maxsim Map@100
      - task:
          type: py-late-information-retrieval
          name: Py Late Information Retrieval
        dataset:
          name: NanoTouche2020
          type: NanoTouche2020
        metrics:
          - type: MaxSim_accuracy@1
            value: 0.8163265306122449
            name: Maxsim Accuracy@1
          - type: MaxSim_accuracy@3
            value: 0.9795918367346939
            name: Maxsim Accuracy@3
          - type: MaxSim_accuracy@5
            value: 0.9795918367346939
            name: Maxsim Accuracy@5
          - type: MaxSim_accuracy@10
            value: 1
            name: Maxsim Accuracy@10
          - type: MaxSim_precision@1
            value: 0.8163265306122449
            name: Maxsim Precision@1
          - type: MaxSim_precision@3
            value: 0.7210884353741496
            name: Maxsim Precision@3
          - type: MaxSim_precision@5
            value: 0.6530612244897959
            name: Maxsim Precision@5
          - type: MaxSim_precision@10
            value: 0.5510204081632653
            name: Maxsim Precision@10
          - type: MaxSim_recall@1
            value: 0.05492567388541453
            name: Maxsim Recall@1
          - type: MaxSim_recall@3
            value: 0.14618659815433527
            name: Maxsim Recall@3
          - type: MaxSim_recall@5
            value: 0.21615229246201462
            name: Maxsim Recall@5
          - type: MaxSim_recall@10
            value: 0.35053940409516887
            name: Maxsim Recall@10
          - type: MaxSim_ndcg@10
            value: 0.6255925383730097
            name: Maxsim Ndcg@10
          - type: MaxSim_mrr@10
            value: 0.8906705539358599
            name: Maxsim Mrr@10
          - type: MaxSim_map@100
            value: 0.4430753846973072
            name: Maxsim Map@100
      - task:
          type: nano-beir
          name: Nano BEIR
        dataset:
          name: NanoBEIR mean
          type: NanoBEIR_mean
        metrics:
          - type: MaxSim_accuracy@1
            value: 0.6274097331240187
            name: Maxsim Accuracy@1
          - type: MaxSim_accuracy@3
            value: 0.7645839874411303
            name: Maxsim Accuracy@3
          - type: MaxSim_accuracy@5
            value: 0.8076609105180533
            name: Maxsim Accuracy@5
          - type: MaxSim_accuracy@10
            value: 0.883076923076923
            name: Maxsim Accuracy@10
          - type: MaxSim_precision@1
            value: 0.6274097331240187
            name: Maxsim Precision@1
          - type: MaxSim_precision@3
            value: 0.36982731554160114
            name: Maxsim Precision@3
          - type: MaxSim_precision@5
            value: 0.28438932496075353
            name: Maxsim Precision@5
          - type: MaxSim_precision@10
            value: 0.19900156985871267
            name: Maxsim Precision@10
          - type: MaxSim_recall@1
            value: 0.3720674033605012
            name: Maxsim Recall@1
          - type: MaxSim_recall@3
            value: 0.5145402673535784
            name: Maxsim Recall@3
          - type: MaxSim_recall@5
            value: 0.5716874609320216
            name: Maxsim Recall@5
          - type: MaxSim_recall@10
            value: 0.6569419367767595
            name: Maxsim Recall@10
          - type: MaxSim_ndcg@10
            value: 0.6405054009190804
            name: Maxsim Ndcg@10
          - type: MaxSim_mrr@10
            value: 0.7104758789962872
            name: Maxsim Mrr@10
          - type: MaxSim_map@100
            value: 0.5602066798193307
            name: Maxsim Map@100



The crispy, lightweight ColBERT family from Mixedbread.

🍞 Looking for a simple end-to-end retrieval solution? Meet Mixedbread Search, our multi-modal and multi-lingual search solution.

mxbai-edge-colbert-v0-17m

This model is a lightweight, 17 million parameter ColBERT with a projection dimension of 48. It is built on top of Ettin-17M, meaning it benefits from all of ModernBERT's architectural efficiencies. Despite this extreme efficiency, it is the best-performer "edge-sized" retriever, outperforming ColBERTv2 and many models with over 10 times more parameters. It can create multi-vector representations for documents of up to 32,000 tokens and is fully compatible with the PyLate library.

Usage

To use this model, you first need to install PyLate:

# uv
uv add pylate
# uv + pip
uv pip install pylate
# pip
pip install -U pylate

Once installed, the model is immediately ready to use to generate representations and index documents:

from pylate import indexes, models, retrieve

# Step 1: Load the model
model = models.ColBERT(
    model_name_or_path="mixedbread-ai/mxbai-edge-colbert-v0-17m",
)


# Step 2: Initialize an index (here, PLAID, for larger document collections)
index = indexes.PLAID(
    index_folder="pylate-index",
    index_name="index",
    override=True,  # This overwrites the existing index if any
)

# Step 3: Encode your documents
documents_ids = ["1", "2", "3"]
documents = ["document 1 text", "document 2 text", "document 3 text"]

documents_embeddings = model.encode(
    documents,
    batch_size=32,
    is_query=False,  # Ensure that it is set to False to indicate that these are documents, not queries
    show_progress_bar=True,
)

# Step 4: Add document embeddings to the index by providing embeddings and corresponding ids
index.add_documents(
    documents_ids=documents_ids,
    documents_embeddings=documents_embeddings,
)

That's all you need to do to encode a full collection! Your documents are indexed and ready to be queried:

# Step 5.1: Initialize the ColBERT retriever
retriever = retrieve.ColBERT(index=index)

# Step 2: Encode the queries
queries_embeddings = model.encode(
    ["query for document 3", "query for document 1"],
    batch_size=32,
    is_query=True,  #  # Ensure that it is set to False to indicate that these are queries
    show_progress_bar=True,
)

# Step 3: Retrieve top-k documents
scores = retriever.retrieve(
    queries_embeddings=queries_embeddings,
    k=10,  # Retrieve the top 10 matches for each query
)

Reranking

Thanks to its extreme parameter efficiency, this model is particularly well-suited to being used as a re-ranker following an even more lightweight first stage retrieval, such as static embeding models. Re-ranking is just as straigthforward:

from pylate import rank, models

# Load the model
model = models.ColBERT(
    model_name_or_path="mixedbread-ai/mxbai-edge-colbert-v0-17m",
)

# Define queries and documents
queries = [
    "query A",
    "query B",
]

documents = [
    ["document A", "document B"],
    ["document 1", "document C", "document B"],
]
documents_ids = [
    [1, 2],
    [1, 3, 2],
]

# Embed them
queries_embeddings = model.encode(
    queries,
    is_query=True,
)

documents_embeddings = model.encode(
    documents,
    is_query=False,
)

# Perform reranking
reranked_documents = rank.rerank(
    documents_ids=documents_ids,
    queries_embeddings=queries_embeddings,
    documents_embeddings=documents_embeddings,
)

Evaluation

Results on BEIR

Model AVG MS MARCO SciFact Touche FiQA TREC-COVID NQ DBPedia
Large Models (>100M)
GTE-ModernColBERT-v1 0.547 0.453 0.763 0.312 0.453 0.836 0.618 0.480
ColBERTv2 0.488 0.456 0.693 0.263 0.356 0.733 0.562 0.446
Medium Models (<35M)
mxbai-edge-colbert-v0-32m 0.521 0.450 0.740 0.313 0.390 0.775 0.600 0.455
answerai-colbert-small-v1 0.534 0.434 0.740 0.250 0.410 0.831 0.594 0.464
bge-small-en-v1.5 0.517 0.408 0.713 0.260 0.403 0.759 0.502 0.400
snowflake-s 0.519 0.402 0.722 0.235 0.407 0.801 0.509 0.410
Small Models (<25M)
mxbai-edge-colbert-v0-17m 0.490 0.416 0.719 0.316 0.326 0.713 0.551 0.410
colbert-muvera-micro 0.394 0.364 0.662 0.251 0.254 0.561 0.386 0.332
all-MiniLM-L6-v2 0.419 0.365 0.645 0.169 0.369 0.472 0.439 0.323

Results on LongEmbed

Model AVG
Large Models (>100M)
GTE-ModernColBERT-v1 (32k) 0.898
GTE-ModernColBERT-v1 (4k) 0.809
granite-embedding-english-r2 0.656
ColBERTv2 0.428
Medium Models (<50M)
mxbai-edge-colbert-v0-32m (32k) 0.849
mxbai-edge-colbert-v0-32m (4k) 0.783
granite-embedding-small-english-r2 0.637
answerai-colbert-small-v1 0.441
bge-small-en-v1.5 0.312
snowflake-arctic-embed-s 0.356
Small Models (<25M)
mxbai-edge-colbert-v0-17m (32k) 0.847
mxbai-edge-colbert-v0-17m (4k) 0.776
all-MiniLM-L6-v2 0.298
colbert-muvera-micro 0.405

For more details on evaluations, please read our Tech Report.

Community

Please join our Discord Community and share your feedback and thoughts! We are here to help and also always happy to chat.

License

Apache 2.0

Citation

If you use our model, please cite the associated tech report:

Coming soon!

If you specifically use its projection heads, or discuss their effect, please cite our report on using different projections for ColBERT models:

@misc{clavie2025simpleprojectionvariantsimprove,
      title={Simple Projection Variants Improve ColBERT Performance}, 
      author={Benjamin Clavié and Sean Lee and Rikiya Takehi and Aamir Shakir and Makoto P. Kato},
      year={2025},
      eprint={2510.12327},
      archivePrefix={arXiv},
      primaryClass={cs.IR},
      url={https://arxiv.org/abs/2510.12327}, 
}

Finally, if you use PyLate in your work, please cite PyLate itself:

@misc{PyLate,
title={PyLate: Flexible Training and Retrieval for Late Interaction Models},
author={Chaffin, Antoine and Sourty, Raphaël},
url={https://github.com/lightonai/pylate},
year={2024}
}