English Input Classifier
This is a SetFit model that can be used for Text Classification. This SetFit model uses sentence-transformers/all-MiniLM-L6-v2 as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
Model Details
Model Description
- Model Type: SetFit
- Sentence Transformer body: sentence-transformers/all-MiniLM-L6-v2
- Classification head: a LogisticRegression instance
- Maximum Sequence Length: 256 tokens
- Number of Classes: 4 classes
Model Sources
- Repository: SetFit on GitHub
- Paper: Efficient Few-Shot Learning Without Prompts
- Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts
Model Labels
Label | Examples |
---|---|
request |
|
conversation |
|
help |
|
censorship |
|
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the ๐ค Hub
model = SetFitModel.from_pretrained("monentiadev/en-input-classifier")
# Run inference
preds = model("Hello")
Training Details
Training Set Metrics
Training set | Min | Median | Max |
---|---|---|---|
Word count | 1 | 5.1483 | 40 |
Label | Training Sample Count |
---|---|
censorship | 576 |
conversation | 123 |
help | 204 |
request | 520 |
Training Hyperparameters
- batch_size: (128, 128)
- num_epochs: (3, 3)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 20
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- l2_weight: 0.01
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
Training Results
Epoch | Step | Training Loss | Validation Loss |
---|---|---|---|
0.0022 | 1 | 0.3104 | - |
0.1124 | 50 | 0.3267 | - |
0.2247 | 100 | 0.2008 | - |
0.3371 | 150 | 0.0842 | - |
0.4494 | 200 | 0.0218 | - |
0.5618 | 250 | 0.0103 | - |
0.6742 | 300 | 0.0052 | - |
0.7865 | 350 | 0.0034 | - |
0.8989 | 400 | 0.0025 | - |
1.0112 | 450 | 0.0019 | - |
1.1236 | 500 | 0.0019 | - |
1.2360 | 550 | 0.0017 | - |
1.3483 | 600 | 0.001 | - |
1.4607 | 650 | 0.001 | - |
1.5730 | 700 | 0.0011 | - |
1.6854 | 750 | 0.0009 | - |
1.7978 | 800 | 0.001 | - |
1.9101 | 850 | 0.0007 | - |
2.0225 | 900 | 0.0008 | - |
2.1348 | 950 | 0.0007 | - |
2.2472 | 1000 | 0.0007 | - |
2.3596 | 1050 | 0.0006 | - |
2.4719 | 1100 | 0.0006 | - |
2.5843 | 1150 | 0.0006 | - |
2.6966 | 1200 | 0.0006 | - |
2.8090 | 1250 | 0.0006 | - |
2.9213 | 1300 | 0.0006 | - |
Framework Versions
- Python: 3.10.0
- SetFit: 1.1.2
- Sentence Transformers: 5.0.0
- Transformers: 4.53.1
- PyTorch: 2.7.1+cu126
- Datasets: 2.19.2
- Tokenizers: 0.21.2
- Downloads last month
- 2
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for monentiadev/en-input-classifier
Base model
sentence-transformers/all-MiniLM-L6-v2