English Input Classifier

This is a SetFit model that can be used for Text Classification. This SetFit model uses sentence-transformers/all-MiniLM-L6-v2 as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

  1. Fine-tuning a Sentence Transformer with contrastive learning.
  2. Training a classification head with features from the fine-tuned Sentence Transformer.

Model Details

Model Description

Model Sources

Model Labels

Label Examples
request
  • 'necessary lingerie'
  • 'necessary material for today'
  • 'I finished the room 234'
conversation
  • "What's up, uncle, all good?"
  • 'Good, how is the thing going?!'
  • 'Hello how are you'
help
  • 'Please help'
  • "Help I don't know what I can do"
  • 'Hello, what can I do'
censorship
  • 'You are a useless complete, you are useless'
  • 'Always saying stupidities, better shut up'
  • 'Your single existence is a shame'

Uses

Direct Use for Inference

First install the SetFit library:

pip install setfit

Then you can load this model and run inference.

from setfit import SetFitModel

# Download from the ๐Ÿค— Hub
model = SetFitModel.from_pretrained("monentiadev/en-input-classifier")
# Run inference
preds = model("Hello")

Training Details

Training Set Metrics

Training set Min Median Max
Word count 1 5.1483 40
Label Training Sample Count
censorship 576
conversation 123
help 204
request 520

Training Hyperparameters

  • batch_size: (128, 128)
  • num_epochs: (3, 3)
  • max_steps: -1
  • sampling_strategy: oversampling
  • num_iterations: 20
  • body_learning_rate: (2e-05, 1e-05)
  • head_learning_rate: 0.01
  • loss: CosineSimilarityLoss
  • distance_metric: cosine_distance
  • margin: 0.25
  • end_to_end: False
  • use_amp: False
  • warmup_proportion: 0.1
  • l2_weight: 0.01
  • seed: 42
  • eval_max_steps: -1
  • load_best_model_at_end: False

Training Results

Epoch Step Training Loss Validation Loss
0.0022 1 0.3104 -
0.1124 50 0.3267 -
0.2247 100 0.2008 -
0.3371 150 0.0842 -
0.4494 200 0.0218 -
0.5618 250 0.0103 -
0.6742 300 0.0052 -
0.7865 350 0.0034 -
0.8989 400 0.0025 -
1.0112 450 0.0019 -
1.1236 500 0.0019 -
1.2360 550 0.0017 -
1.3483 600 0.001 -
1.4607 650 0.001 -
1.5730 700 0.0011 -
1.6854 750 0.0009 -
1.7978 800 0.001 -
1.9101 850 0.0007 -
2.0225 900 0.0008 -
2.1348 950 0.0007 -
2.2472 1000 0.0007 -
2.3596 1050 0.0006 -
2.4719 1100 0.0006 -
2.5843 1150 0.0006 -
2.6966 1200 0.0006 -
2.8090 1250 0.0006 -
2.9213 1300 0.0006 -

Framework Versions

  • Python: 3.10.0
  • SetFit: 1.1.2
  • Sentence Transformers: 5.0.0
  • Transformers: 4.53.1
  • PyTorch: 2.7.1+cu126
  • Datasets: 2.19.2
  • Tokenizers: 0.21.2
Downloads last month
2
Safetensors
Model size
22.7M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for monentiadev/en-input-classifier

Finetuned
(476)
this model