metadata
language:
- id
license: mit
tags:
- text-classification
- bert
- spam-detection
- indonesian
- twitter
- retrained
datasets:
- nahiar/spam_detection_v2
pipeline_tag: text-classification
inference: true
base_model: nahiar/spam-detection-bert-v1
model_type: bert
library_name: transformers
widget:
- text: >-
lacak hp hilang by no hp / imei lacak penipu/scammer/tabrak
lari/terror/revengeporn sadap / hack / pulihkan akun
example_title: Spam Example
- text: >-
Senin, 21 Juli 2025, Samapta Polsek Ngaglik melaksanakan patroli stasioner
balong jalan palagan donoharjo
example_title: Ham Example
- text: >-
Mari berkontribusi terhadap gerakan rakyat dengan membeli baju ini seharga
Rp 160.000. Hubungi kami melalui WA 08977472296
example_title: Obvious Spam
model-index:
- name: spam-detection-bert
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: Indonesian Spam Detection Dataset v2
type: nahiar/spam_detection_v2
metrics:
- name: Accuracy
type: accuracy
value: 0.99
- name: F1 Score (Weighted)
type: f1
value: 0.99
- name: Precision (HAM)
type: precision
value: 0.99
- name: Recall (HAM)
type: recall
value: 1
- name: Precision (SPAM)
type: precision
value: 1
- name: Recall (SPAM)
type: recall
value: 0.83
Indonesian Spam Detection BERT
Model BERT untuk deteksi spam dalam bahasa Indonesia dengan akurasi 99%. Model ini telah di-retrain dengan dataset yang telah diperbarui dan dilabeli ulang untuk performa yang optimal pada konten Indonesia.
Quick Start
from transformers import pipeline
# Cara termudah menggunakan model
classifier = pipeline("text-classification",
model="nahiar/spam-detection-bert",
tokenizer="nahiar/spam-detection-bert")
# Test dengan teks
texts = [
"lacak hp hilang by no hp / imei lacak penipu/scammer/tabrak lari/terror/revengeporn sadap / hack / pulihkan akun",
"Senin, 21 Juli 2025, Samapta Polsek Ngaglik melaksanakan patroli stasioner balong jalan palagan donoharjo",
"Mari berkontribusi terhadap gerakan rakyat dengan membeli baju ini seharga Rp 160.000. Hubungi kami melalui WA 08977472296"
]
results = classifier(texts)
for text, result in zip(texts, results):
print(f"Text: {text}")
print(f"Result: {result['label']} (confidence: {result['score']:.4f})")
print("---")
Model Details
- Base Model: nahiar/spam-detection-bert-v1 (fine-tuned from cahya/bert-base-indonesian-1.5G)
- Task: Binary Text Classification (Spam vs Ham)
- Language: Indonesian (Bahasa Indonesia)
- Model Size: ~110M parameters
- Max Sequence Length: 512 tokens
- Training Epochs: 3
- Batch Size: 16
- Learning Rate: 2e-5
Performance
Metric | HAM | SPAM | Overall |
---|---|---|---|
Precision | 99% | 100% | 99% |
Recall | 100% | 83% | 99% |
F1-Score | 99% | 91% | 99% |
Overall Accuracy | - | - | 99% |
Confusion Matrix
- True HAM correctly predicted: 430/430 (100%)
- True SPAM correctly predicted: 25/30 (83%)
- False Positives (HAM predicted as SPAM): 0
- False Negatives (SPAM predicted as HAM): 5
Dataset
Model v2 ini dilatih ulang menggunakan dataset yang telah diperbarui dan dilabeli ulang secara manual:
- Dataset: spam_re_labelled_vNew.csv
- Total Samples: 460 pesan
- Distribution: 430 HAM, 30 SPAM
- Encoding: Latin-1
- Quality: Manual re-labeling untuk akurasi yang lebih tinggi
Updated: Januari 2025
Key Features
✅ Re-trained dengan dataset yang telah dilabeli ulang secara manual ✅ High accuracy (99%) pada deteksi spam dengan konteks Indonesia ✅ Better handling untuk pesan dengan format yang kompleks ✅ Enhanced performance pada teks dengan campuran formal dan informal ✅ Optimized untuk konten media sosial Indonesia
Label Mapping
0: "HAM" (tidak spam)
1: "SPAM" (spam)
Training Process
Model ini di-retrain menggunakan:
- Optimizer: AdamW
- Learning Rate: 2e-5
- Epochs: 3
- Batch Size: 16
- Max Length: 128 tokens
- Train/Validation Split: 80/20
Usage Example
import torch
from transformers import AutoTokenizer, AutoModelForSequenceClassification
# Load model dan tokenizer
tokenizer = AutoTokenizer.from_pretrained("nahiar/spam-detection-bert")
model = AutoModelForSequenceClassification.from_pretrained("nahiar/spam-detection-bert")
def predict_spam(text):
inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True)
outputs = model(**inputs)
probs = torch.softmax(outputs.logits, dim=1)
predicted_label = torch.argmax(probs, dim=1).item()
confidence = probs[0][predicted_label].item()
label_map = {0: "HAM", 1: "SPAM"}
return label_map[predicted_label], confidence
# Test
text = "Dapatkan uang dengan mudah! Klik link ini sekarang!"
result, confidence = predict_spam(text)
print(f"Prediksi: {result} (Confidence: {confidence:.4f})")
Citation
@misc{nahiar_spam_detection_bert,
title={Indonesian Spam Detection BERT},
author={Raihan Hidayatullah Djunaedi},
year={2025},
url={https://huggingface.co/nahiar/spam-detection-bert}
}
Changelog
Current Version (January 2025)
- Re-trained model dengan dataset yang telah dilabeli ulang secara manual
- Enhanced handling untuk konten Indonesia yang kompleks
- Better performance pada deteksi spam dengan konteks lokal Indonesia
- Optimized untuk konten media sosial (Twitter, Instagram, dll)
- Improved accuracy dengan distribusi dataset yang lebih balanced