arg_extraction
This model is a fine-tuned version of xlm-roberta-base on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.2267
- Accuracy: 0.9342
- Precision: 0.2597
- Recall: 0.3414
- F1: 0.2950
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 5
Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
|---|---|---|---|---|---|---|---|
| No log | 1.0 | 201 | 0.3144 | 0.9226 | 0.2013 | 0.2680 | 0.2299 |
| No log | 2.0 | 402 | 0.2580 | 0.9307 | 0.2323 | 0.2962 | 0.2604 |
| 0.3942 | 3.0 | 603 | 0.2391 | 0.9320 | 0.2481 | 0.3355 | 0.2853 |
| 0.3942 | 4.0 | 804 | 0.2332 | 0.9321 | 0.2556 | 0.3463 | 0.2941 |
| 0.227 | 5.0 | 1005 | 0.2267 | 0.9342 | 0.2597 | 0.3414 | 0.2950 |
Framework versions
- Transformers 4.52.4
- Pytorch 2.7.1+cu126
- Datasets 4.0.0
- Tokenizers 0.21.1
- Downloads last month
- -
Model tree for nattkorat/arg_extraction
Base model
FacebookAI/xlm-roberta-base