|
--- |
|
license: mit |
|
base_model: BAAI/bge-reranker-v2-m3 |
|
tags: |
|
- generated_from_trainer |
|
- transformers |
|
library_name: sentence-transformers |
|
pipeline_tag: text-ranking |
|
model-index: |
|
- name: bge_reranker |
|
results: [] |
|
inference: |
|
parameters: |
|
normalize: true |
|
widget: |
|
- inputs: |
|
source_sentence: "Hello, world!" |
|
sentences: |
|
- "Hello! How are you?" |
|
- "Cats and dogs" |
|
- "The sky is blue" |
|
--- |
|
|
|
# Reranker model |
|
|
|
- [Reranker model](#reranker-model) |
|
- [Brief information](#brief-information) |
|
- [Supporting architectures](#supporting-architectures) |
|
- [Example usage](#example-usage) |
|
- [HuggingFace Inference Endpoints](#huggingface-inference-endpoints) |
|
- [Local inference](#local-inference) |
|
|
|
|
|
|
|
## Brief information |
|
|
|
This repository contains reranker model ```bge-reranker-v2-m3``` which you can run on HuggingFace Inference Endpoints. |
|
- Base model: [BAAI/bge-reranker-v2-m3](https://huggingface.co/BAAI/bge-reranker-v2-m3) with no any fine tune. |
|
- Commit: [953dc6f6f85a1b2dbfca4c34a2796e7dde08d41e](https://huggingface.co/BAAI/bge-reranker-v2-m3/commit/953dc6f6f85a1b2dbfca4c34a2796e7dde08d41e) |
|
|
|
|
|
**More details please refer to the [repo of bse model](https://huggingface.co/BAAI/bge-reranker-v2-m3).** |
|
|
|
## Supporting architectures |
|
|
|
- Apple Silicon MPS |
|
- Nvidia GPU |
|
- HuggingFace Inference Endpoints (AWS) |
|
- CPU (Intel Sapphire Rapids, 4 vCPU, 8 Gb) |
|
- GPU (Nvidia T4) |
|
- Infernia 2 (2 cores, 32 Gb RAM) |
|
|
|
## Example usage |
|
|
|
### HuggingFace Inference Endpoints |
|
|
|
⚠️ When you will deploy this model in HuggingFace Inference endpoints plese select ```Settings``` -> ```Advanced settings``` -> ```Task```: ```Sentence Similarity``` |
|
|
|
```bash |
|
curl "https://xxxxxxx.us-east-1.aws.endpoints.huggingface.cloud" \ |
|
-X POST \ |
|
-H "Accept: application/json" \ |
|
-H "Authorization: Bearer hf_yyyyyyy" \ |
|
-H "Content-Type: application/json" \ |
|
-d '{ |
|
"inputs": { |
|
"source_sentence": "Hello, world!", |
|
"sentences": [ |
|
"Hello! How are you?", |
|
"Cats and dogs", |
|
"The sky is blue" |
|
] |
|
}, |
|
"normalize": true |
|
}' |
|
``` |
|
|
|
### Local inference |
|
|
|
```python |
|
from FlagEmbedding import FlagReranker |
|
|
|
class RerankRequest(BaseModel): |
|
query: str |
|
documents: list[str] |
|
|
|
# Prepare array |
|
arr = [] |
|
for element in request.documents: |
|
arr.append([request.query, element]) |
|
print(arr) |
|
|
|
# Inference |
|
reranker = FlagReranker('netandreus/bge-reranker-v2-m3', use_fp16=True) |
|
scores = reranker.compute_score(arr, normalize=True) |
|
if not isinstance(scores, list): |
|
scores = [scores] |
|
print(scores) # [-8.1875, 5.26171875] |
|
``` |