SetFit with sentence-transformers/paraphrase-mpnet-base-v2
This is a SetFit model that can be used for Text Classification. This SetFit model uses sentence-transformers/paraphrase-mpnet-base-v2 as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
Model Details
Model Description
Model Sources
Model Labels
Label |
Examples |
NONE |
- 'How do I learn to play the guitar?'
- "What's the longest river in the world?"
- 'How do I overcome procrastination?'
|
KUBIE |
- 'What logs should I check to identify container crashes in the qa-soc-svcs namespace?'
- 'Can you suggest ways to troubleshoot an image pull error in the "kube-public" namespace?'
- "I'm encountering errors with a pod in the sandbox-6 namespace. Any suggestions on how to debug it?"
|
aws_iam |
- 'Show me the IAM role details including attached policies.'
- 'Show me the IAM roles that have the "admin" prefix.'
- 'How can I get detailed information about a particular IAM role?'
|
DOC |
- 'How to access ArgoCD on Production?'
- 'How to run terraform in CDO?'
- 'How to push images to dockerhub.cisco.com?'
|
access_management |
- 'Access to prod-aws infrastructure is required urgently for a deployment.'
- 'Could you provide me access to the dev-aws resources?'
- 'I require access to the prod-sagemaker instance for machine learning experiments.'
|
Evaluation
Metrics
Label |
Accuracy |
all |
0.9962 |
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
model = SetFitModel.from_pretrained("setfit_model_id")
preds = model("How can I reduce stress?")
Training Details
Training Set Metrics
Training set |
Min |
Median |
Max |
Word count |
1 |
8.5408 |
17 |
Label |
Training Sample Count |
aws_iam |
20 |
access_management |
20 |
DOC |
18 |
KUBIE |
20 |
NONE |
20 |
Training Hyperparameters
- batch_size: (16, 16)
- num_epochs: (4, 4)
- max_steps: -1
- sampling_strategy: oversampling
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: True
Training Results
Epoch |
Step |
Training Loss |
Validation Loss |
0.0021 |
1 |
0.2675 |
- |
0.1042 |
50 |
0.1143 |
- |
0.2083 |
100 |
0.0578 |
- |
0.3125 |
150 |
0.0028 |
- |
0.4167 |
200 |
0.0032 |
- |
0.5208 |
250 |
0.0007 |
- |
0.625 |
300 |
0.0006 |
- |
0.7292 |
350 |
0.0004 |
- |
0.8333 |
400 |
0.0005 |
- |
0.9375 |
450 |
0.0006 |
- |
1.0 |
480 |
- |
0.0027 |
1.0417 |
500 |
0.0004 |
- |
1.1458 |
550 |
0.0002 |
- |
1.25 |
600 |
0.0003 |
- |
1.3542 |
650 |
0.0002 |
- |
1.4583 |
700 |
0.0002 |
- |
1.5625 |
750 |
0.0002 |
- |
1.6667 |
800 |
0.0002 |
- |
1.7708 |
850 |
0.0002 |
- |
1.875 |
900 |
0.0002 |
- |
1.9792 |
950 |
0.0001 |
- |
2.0 |
960 |
- |
0.0032 |
2.0833 |
1000 |
0.0001 |
- |
2.1875 |
1050 |
0.0002 |
- |
2.2917 |
1100 |
0.0001 |
- |
2.3958 |
1150 |
0.0002 |
- |
2.5 |
1200 |
0.0002 |
- |
2.6042 |
1250 |
0.0001 |
- |
2.7083 |
1300 |
0.0002 |
- |
2.8125 |
1350 |
0.0001 |
- |
2.9167 |
1400 |
0.0001 |
- |
3.0 |
1440 |
- |
0.004 |
3.0208 |
1450 |
0.0001 |
- |
3.125 |
1500 |
0.0001 |
- |
3.2292 |
1550 |
0.0002 |
- |
3.3333 |
1600 |
0.0002 |
- |
3.4375 |
1650 |
0.0001 |
- |
3.5417 |
1700 |
0.0002 |
- |
3.6458 |
1750 |
0.0001 |
- |
3.75 |
1800 |
0.0001 |
- |
3.8542 |
1850 |
0.0001 |
- |
3.9583 |
1900 |
0.0002 |
- |
4.0 |
1920 |
- |
0.0037 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.9.6
- SetFit: 1.0.3
- Sentence Transformers: 2.7.0
- Transformers: 4.40.1
- PyTorch: 2.1.2
- Datasets: 2.19.0
- Tokenizers: 0.19.1
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}