|
---
|
|
library_name: transformers
|
|
tags:
|
|
- automatic-speech-recognition
|
|
- audio-visual-speech-recognition
|
|
- multimodal
|
|
- speech-recognition
|
|
- lip-reading
|
|
- cocktail-party
|
|
- noise-robust
|
|
- av-hubert
|
|
- transformer
|
|
- pytorch
|
|
- audio
|
|
- video
|
|
- english
|
|
- lrs2
|
|
- voxceleb2
|
|
- ctc
|
|
- attention
|
|
- beam-search
|
|
- multi-speaker
|
|
- noisy-speech
|
|
datasets:
|
|
- nguyenvulebinh/AVYT
|
|
language:
|
|
- en
|
|
metrics:
|
|
- wer
|
|
pipeline_tag: automatic-speech-recognition
|
|
---
|
|
|
|
# AVSRCocktail: Audio-Visual Speech Recognition for Cocktail Party Scenarios |
|
|
|
**Official implementation** of "[Cocktail-Party Audio-Visual Speech Recognition](https://arxiv.org/abs/2506.02178)" (Interspeech 2025). |
|
|
|
A robust audio-visual speech recognition system designed for multi-speaker environments and noisy cocktail party scenarios. The model combines lip reading and audio processing to achieve superior performance in challenging acoustic conditions with background noise and speaker interference. |
|
|
|
## Getting Started |
|
|
|
### Sections |
|
1. <a href="#install">Installation</a> |
|
2. <a href="#evaluation">Evaluation</a> |
|
3. <a href="#training">Training</a> |
|
|
|
## <a id="install">1. Installation </a> |
|
|
|
Following this steps: |
|
|
|
```sh |
|
# Clone the baseline code repo |
|
git clone https://github.com/nguyenvulebinh/AVSRCocktail.git |
|
cd AVSRCocktail |
|
|
|
# Create Conda environment |
|
conda create --name AVSRCocktail python=3.11 |
|
conda activate AVSRCocktail |
|
|
|
# Install FFmpeg, if it's not already installed. |
|
conda install ffmpeg |
|
|
|
# Install dependencies |
|
pip install -r requirements.txt |
|
``` |
|
|
|
## <a id="evaluation">2. Evaluation</a> |
|
|
|
The evaluation script `script/evaluation.py` provides comprehensive evaluation capabilities for the AVSR Cocktail model on multiple datasets with various noise conditions and interference scenarios. |
|
|
|
### Quick Start |
|
|
|
**Basic evaluation on LRS2 test set:** |
|
```sh |
|
python script/evaluation.py --model_type avsr_cocktail --dataset_name lrs2 --set_id test |
|
``` |
|
|
|
**Evaluation on AVCocktail dataset:** |
|
```sh |
|
python script/evaluation.py --model_type avsr_cocktail --dataset_name AVCocktail --set_id video_0 |
|
``` |
|
|
|
### Supported Datasets |
|
|
|
#### 1. LRS2 Dataset |
|
Evaluate on the LRS2 dataset with various noise conditions: |
|
|
|
**Available test sets:** |
|
- `test`: Clean test set |
|
- `test_snr_n5_interferer_1`: SNR -5dB with 1 interferer |
|
- `test_snr_n5_interferer_2`: SNR -5dB with 2 interferers |
|
- `test_snr_0_interferer_1`: SNR 0dB with 1 interferer |
|
- `test_snr_0_interferer_2`: SNR 0dB with 2 interferers |
|
- `test_snr_5_interferer_1`: SNR 5dB with 1 interferer |
|
- `test_snr_5_interferer_2`: SNR 5dB with 2 interferers |
|
- `test_snr_10_interferer_1`: SNR 10dB with 1 interferer |
|
- `test_snr_10_interferer_2`: SNR 10dB with 2 interferers |
|
- `*`: Evaluate on all test sets and report average WER |
|
|
|
**Example:** |
|
```sh |
|
# Evaluate on clean test set |
|
python script/evaluation.py --model_type avsr_cocktail --dataset_name lrs2 --set_id test |
|
|
|
# Evaluate on noisy conditions |
|
python script/evaluation.py --model_type avsr_cocktail --dataset_name lrs2 --set_id test_snr_0_interferer_1 |
|
|
|
# Evaluate on all conditions |
|
python script/evaluation.py --model_type avsr_cocktail --dataset_name lrs2 --set_id "*" |
|
``` |
|
|
|
#### 2. AVCocktail Dataset |
|
Evaluate on the AVCocktail cocktail party dataset: |
|
|
|
**Available video sets:** |
|
- `video_0` to `video_50`: Individual video sessions |
|
- `*`: Evaluate on all video sessions and report average WER |
|
|
|
The evaluation reports WER for three different chunking strategies: |
|
- `asd_chunk`: Chunks based on Active Speaker Detection |
|
- `fixed_chunk`: Fixed-duration chunks |
|
- `gold_chunk`: Ground truth optimal chunks |
|
|
|
**Example:** |
|
```sh |
|
# Evaluate on specific video |
|
python script/evaluation.py --model_type avsr_cocktail --dataset_name AVCocktail --set_id video_0 |
|
|
|
# Evaluate on all videos |
|
python script/evaluation.py --model_type avsr_cocktail --dataset_name AVCocktail --set_id "*" |
|
``` |
|
|
|
### Configuration Options |
|
|
|
#### Model Configuration |
|
- `--model_type`: Model architecture to use (use `avsr_cocktail` for the AVSR Cocktail model) |
|
- `--checkpoint_path`: Path to custom model checkpoint (default: uses pretrained `nguyenvulebinh/AVSRCocktail`) |
|
- `--cache_dir`: Directory to cache downloaded models (default: `./model-bin`) |
|
|
|
#### Processing Parameters |
|
- `--max_length`: Maximum length of video segments in seconds (default: 15) |
|
- `--beam_size`: Beam size for beam search decoding (default: 3) |
|
|
|
#### Dataset Parameters |
|
- `--dataset_name`: Dataset to evaluate on (`lrs2` or `AVCocktail`) |
|
- `--set_id`: Specific subset to evaluate (see dataset-specific options above) |
|
|
|
#### Output Options |
|
- `--verbose`: Enable verbose output during processing |
|
- `--output_dir_name`: Name of output directory for session processing (default: `output`) |
|
|
|
### Advanced Usage |
|
|
|
**Custom model checkpoint:** |
|
```sh |
|
python script/evaluation.py \ |
|
--model_type avsr_cocktail \ |
|
--dataset_name lrs2 \ |
|
--set_id test \ |
|
--checkpoint_path ./model-bin/my_custom_model \ |
|
--cache_dir ./custom_cache |
|
``` |
|
|
|
**Optimized inference settings:** |
|
```sh |
|
python script/evaluation.py \ |
|
--model_type avsr_cocktail \ |
|
--dataset_name AVCocktail \ |
|
--set_id "*" \ |
|
--max_length 10 \ |
|
--beam_size 5 \ |
|
--verbose |
|
``` |
|
|
|
### Output Format |
|
|
|
The evaluation script outputs Word Error Rate (WER) scores: |
|
|
|
**LRS2 evaluation output:** |
|
``` |
|
WER test: 0.1234 |
|
``` |
|
|
|
**AVCocktail evaluation output:** |
|
``` |
|
WER video_0 asd_chunk: 0.1234 |
|
WER video_0 fixed_chunk: 0.1456 |
|
WER video_0 gold_chunk: 0.1123 |
|
``` |
|
|
|
When using `--set_id "*"`, the script reports both individual and average WER scores across all test conditions. |
|
|
|
## <a id="training">3. Training</a> |
|
|
|
### Model Architecture |
|
|
|
- **Encoder**: Pre-trained AV-HuBERT large model (`nguyenvulebinh/avhubert_encoder_large_noise_pt_noise_ft_433h`) |
|
- **Decoder**: Transformer decoder with CTC/Attention joint training |
|
- **Tokenization**: SentencePiece unigram tokenizer with 5000 vocabulary units |
|
- **Input**: Video frames are cropped to the mouth region of interest using a 96 × 96 bounding box, while the audio is sampled at a 16 kHz rate |
|
|
|
### Training Data |
|
|
|
The model is trained on multiple large-scale datasets that have been preprocessed and are ready for the training pipeline. All datasets are hosted on Hugging Face at [nguyenvulebinh/AVYT](https://huggingface.co/datasets/nguyenvulebinh/AVYT) and include: |
|
|
|
| Dataset | Size | |
|
|---------|------| |
|
| **LRS2** | ~145k samples | |
|
| **VoxCeleb2** | ~540k samples | |
|
| **AVYT** | ~717k samples | |
|
| **AVYT-mix** | ~483k samples | |
|
|
|
The information about these datasets can be found in the [Cocktail-Party Audio-Visual Speech Recognition](https://arxiv.org/abs/2506.02178) paper. |
|
|
|
**Dataset Features:** |
|
- **Preprocessed**: All audio-visual data is pre-processed and ready for direct input to the training pipeline |
|
- **Multi-modal**: Each sample contains synchronized audio and video (mouth crop) data |
|
- **Labeled**: Text transcriptions for supervised learning |
|
|
|
The training pipeline automatically handles dataset loading and loads data in [streaming mode](https://huggingface.co/docs/datasets/stream). However, to make training faster and more stable, it's recommended to download all datasets before running the training pipeline. The storage needed to save all datasets is approximately 1.46 TB. |
|
|
|
### Training Process |
|
|
|
The training script is available at `script/train.py`. |
|
|
|
**Multi-GPU Distributed Training:** |
|
```sh |
|
# Set environment variables for distributed training |
|
export NCCL_DEBUG=WARN |
|
export OMP_NUM_THREADS=1 |
|
export CUDA_VISIBLE_DEVICES=0,1,2,3 |
|
|
|
# Run with torchrun for multi-GPU training (using default parameters) |
|
torchrun --nproc_per_node 4 script/train.py |
|
|
|
# Run with custom parameters |
|
torchrun --nproc_per_node 4 script/train.py \ |
|
--streaming_dataset \ |
|
--batch_size 6 \ |
|
--max_steps 400000 \ |
|
--gradient_accumulation_steps 2 \ |
|
--save_steps 2000 \ |
|
--eval_steps 2000 \ |
|
--learning_rate 1e-4 \ |
|
--warmup_steps 4000 \ |
|
--checkpoint_name avsr_avhubert_ctcattn \ |
|
--model_name_or_path ./model-bin/avsr_cocktail \ |
|
--output_dir ./model-bin |
|
``` |
|
|
|
**Model Output:** |
|
The trained model will be saved by default in `model-bin/{checkpoint_name}/` (default: `model-bin/avsr_avhubert_ctcattn/`). |
|
|
|
#### Configuration Options |
|
|
|
You can customize training parameters using command line arguments: |
|
|
|
**Dataset Options:** |
|
- `--streaming_dataset`: Use streaming mode for datasets (default: False) |
|
|
|
**Training Parameters:** |
|
- `--batch_size`: Batch size per device (default: 6) |
|
- `--max_steps`: Total training steps (default: 400000) |
|
- `--learning_rate`: Initial learning rate (default: 1e-4) |
|
- `--warmup_steps`: Learning rate warmup steps (default: 4000) |
|
- `--gradient_accumulation_steps`: Gradient accumulation (default: 2) |
|
|
|
**Checkpoint and Logging:** |
|
- `--save_steps`: Checkpoint saving frequency (default: 2000) |
|
- `--eval_steps`: Evaluation frequency (default: 2000) |
|
- `--log_interval`: Logging frequency (default: 25) |
|
- `--checkpoint_name`: Name for the checkpoint directory (default: "avsr_avhubert_ctcattn") |
|
- `--resume_from_checkpoint`: Resume training from last checkpoint (default: False) |
|
|
|
**Model and Output:** |
|
- `--model_name_or_path`: Path to pretrained model (default: "./model-bin/avsr_cocktail") |
|
- `--output_dir`: Output directory for checkpoints (default: "./model-bin") |
|
- `--report_to`: Logging backend, "wandb" or "none" (default: "none") |
|
|
|
**Hardware Requirements:** |
|
- **GPU Memory**: The default training configuration is designed to fit within **24GB GPU memory** |
|
- **Training Time**: With 2x NVIDIA Titan RTX 24GB GPUs, training takes approximately **56 hours per epoch** |
|
- **Convergence**: **200,000 steps** (total batch size 24) is typically sufficient for model convergence |
|
|
|
|
|
## Acknowledgement |
|
|
|
This repository is built using the [auto_avsr](https://github.com/mpc001/auto_avsr), [espnet](https://github.com/espnet/espnet), and [avhubert](https://github.com/facebookresearch/av_hubert) repositories. |
|
|
|
## Contact |
|
|
|
nguyenvulebinh@gmail.com |