NetaYume v35 Flashpack

Inference

from diffusers import AutoencoderKL, Lumina2Pipeline, Lumina2Transformer2DModel
from diffusers.schedulers import FlowMatchEulerDiscreteScheduler
from flashpack import FlashPackMixin
from flashpack.integrations.diffusers import FlashPackDiffusionPipeline
from flashpack.integrations.diffusers.model import FlashPackDiffusersModelMixin
from flashpack.integrations.transformers import FlashPackTransformersModelMixin
import torch
from transformers import Gemma2Model

class TransformerModel(Lumina2Transformer2DModel, FlashPackDiffusersModelMixin):
    pass

class TextEncoder(Gemma2Model, FlashPackTransformersModelMixin):
    pass

class Lumina2FlashpackPipeline(Lumina2Pipeline, FlashPackDiffusionPipeline):
    def __init__(self, transformer: TransformerModel, scheduler: FlowMatchEulerDiscreteScheduler, vae: AutoencoderKL, text_encoder: TextEncoder, tokenizer):
        super().__init__(transformer, scheduler, vae, text_encoder, tokenizer)

if __name__ == '__main__':
    model_path = '/path/to/netayume-v35-flashpack'
    text_encoder = TextEncoder.from_pretrained_flashpack(model_path, subfolder='text_encoder', torch_dtype=torch.bfloat16)
    transformer = TransformerModel.from_pretrained_flashpack(model_path, subfolder='transformer', torch_dtype=torch.bfloat16)
    pipeline = Lumina2FlashpackPipeline.from_pretrained_flashpack(
        model_path,
        text_encoder=text_encoder,
        transformer=transformer,
        torch_dtype=torch.bfloat16
    )
    pipeline.enable_model_cpu_offload()
    image = pipeline(
        'prompt',
        system_prompt='You are an assistant designed to generate anime images based on textual prompts.',
        num_inference_steps=40,
        generator=torch.Generator().manual_seed(0)
        cfg_trunc_ratio=6,
        cfg_normalization=False
    ).images[0]
    image.save('preview.png')

References

Downloads last month
38
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support