cb-big2

Chatterbox TTS

resemble-logo-horizontal

Chatterbox Multilingual Resemble AI's production-grade open source TTS model. Chatterbox Multilingual supports Arabic, Danish, German, Greek, English, Spanish, Finnish, French, Hebrew, Hindi, Italian, Japanese, Korean, Malay, Dutch, Norwegian, Polish, Portuguese, Russian, Swedish, Swahili, Turkish, Chinese out of the box. Licensed under MIT, Chatterbox has been benchmarked against leading closed-source systems like ElevenLabs, and is consistently preferred in side-by-side evaluations.

Whether you're working on memes, videos, games, or AI agents, Chatterbox brings your content to life. It's also the first open source TTS model to support emotion exaggeration control, a powerful feature that makes your voices stand out.

Chatterbox is provided in an exported ONNX format, enabling fast and portable inference with ONNX Runtime across platforms.

Key Details

  • SoTA zeroshot English TTS
  • 0.5B Llama backbone
  • Unique exaggeration/intensity control
  • Ultra-stable with alignment-informed inference
  • Trained on 0.5M hours of cleaned data
  • Watermarked outputs (optional)
  • Easy voice conversion script using onnxruntime
  • Outperforms ElevenLabs

Tips

  • General Use (TTS and Voice Agents):

    • The default settings (exaggeration=0.5, cfg=0.5) work well for most prompts.
  • Expressive or Dramatic Speech:

    • Try increase exaggeration to around 0.7 or higher.
    • Higher exaggeration tends to speed up speech;

Usage

Link to GitHub ONNX Export and Inference script

# !pip install --upgrade onnxruntime==1.22.1 huggingface_hub==0.34.4 transformers==4.46.3 numpy==2.2.6 tqdm==4.67.1 librosa==0.11.0 soundfile==0.13.1 perth==1.0.0
# for Chinese, Japanese additionally pip install pkuseg==0.0.25 pykakasi==2.3.0

import onnxruntime

from huggingface_hub import hf_hub_download
from transformers import AutoTokenizer

import numpy as np
from tqdm import tqdm
import librosa
import soundfile as sf
from unicodedata import category
import json

S3GEN_SR = 24000
START_SPEECH_TOKEN = 6561
STOP_SPEECH_TOKEN = 6562
SUPPORTED_LANGUAGES = {
  "ar": "Arabic",
  "da": "Danish",
  "de": "German",
  "el": "Greek",
  "en": "English",
  "es": "Spanish",
  "fi": "Finnish",
  "fr": "French",
  "he": "Hebrew",
  "hi": "Hindi",
  "it": "Italian",
  "ja": "Japanese",
  "ko": "Korean",
  "ms": "Malay",
  "nl": "Dutch",
  "no": "Norwegian",
  "pl": "Polish",
  "pt": "Portuguese",
  "ru": "Russian",
  "sv": "Swedish",
  "sw": "Swahili",
  "tr": "Turkish",
  "zh": "Chinese",
}


class RepetitionPenaltyLogitsProcessor:
    def __init__(self, penalty: float):
        if not isinstance(penalty, float) or not (penalty > 0):
            raise ValueError(f"`penalty` must be a strictly positive float, but is {penalty}")
        self.penalty = penalty

    def __call__(self, input_ids: np.ndarray, scores: np.ndarray) -> np.ndarray:
        score = np.take_along_axis(scores, input_ids, axis=1)
        score = np.where(score < 0, score * self.penalty, score / self.penalty)
        scores_processed = scores.copy()
        np.put_along_axis(scores_processed, input_ids, score, axis=1)
        return scores_processed


class ChineseCangjieConverter:
    """Converts Chinese characters to Cangjie codes for tokenization."""
    
    def __init__(self):
        self.word2cj = {}
        self.cj2word = {}
        self.segmenter = None
        self._load_cangjie_mapping()
        self._init_segmenter()
    
    def _load_cangjie_mapping(self):
        """Load Cangjie mapping from HuggingFace model repository."""        
        try:
            cangjie_file = hf_hub_download(
                repo_id="onnx-community/chatterbox-multilingual-ONNX",
                filename="Cangjie5_TC.json",
            )
            
            with open(cangjie_file, "r", encoding="utf-8") as fp:
                data = json.load(fp)
            
            for entry in data:
                word, code = entry.split("\t")[:2]
                self.word2cj[word] = code
                if code not in self.cj2word:
                    self.cj2word[code] = [word]
                else:
                    self.cj2word[code].append(word)
                    
        except Exception as e:
            print(f"Could not load Cangjie mapping: {e}")
    
    def _init_segmenter(self):
        """Initialize pkuseg segmenter."""
        try:
            from pkuseg import pkuseg
            self.segmenter = pkuseg()
        except ImportError:
            print("pkuseg not available - Chinese segmentation will be skipped")
            self.segmenter = None
    
    def _cangjie_encode(self, glyph: str):
        """Encode a single Chinese glyph to Cangjie code."""
        normed_glyph = glyph
        code = self.word2cj.get(normed_glyph, None)
        if code is None:  # e.g. Japanese hiragana
            return None
        index = self.cj2word[code].index(normed_glyph)
        index = str(index) if index > 0 else ""
        return code + str(index)
    

    
    def __call__(self, text):
        """Convert Chinese characters in text to Cangjie tokens."""
        output = []
        if self.segmenter is not None:
            segmented_words = self.segmenter.cut(text)
            full_text = " ".join(segmented_words)
        else:
            full_text = text
        
        for t in full_text:
            if category(t) == "Lo":
                cangjie = self._cangjie_encode(t)
                if cangjie is None:
                    output.append(t)
                    continue
                code = []
                for c in cangjie:
                    code.append(f"[cj_{c}]")
                code.append("[cj_.]")
                code = "".join(code)
                output.append(code)
            else:
                output.append(t)
        return "".join(output)


def is_kanji(c: str) -> bool:
    """Check if character is kanji."""
    return 19968 <= ord(c) <= 40959


def is_katakana(c: str) -> bool:
    """Check if character is katakana."""
    return 12449 <= ord(c) <= 12538


def hiragana_normalize(text: str) -> str:
    """Japanese text normalization: converts kanji to hiragana; katakana remains the same."""
    global _kakasi
    
    try:
        if _kakasi is None:
            import pykakasi
            _kakasi = pykakasi.kakasi()
        
        result = _kakasi.convert(text)
        out = []
        
        for r in result:
            inp = r['orig']
            hira = r["hira"]

            # Any kanji in the phrase
            if any([is_kanji(c) for c in inp]):
                if hira and hira[0] in ["は", "へ"]:  # Safety check for empty hira
                    hira = " " + hira
                out.append(hira)

            # All katakana
            elif all([is_katakana(c) for c in inp]) if inp else False:  # Safety check for empty inp
                out.append(r['orig'])

            else:
                out.append(inp)
        
        normalized_text = "".join(out)
        
        # Decompose Japanese characters for tokenizer compatibility
        import unicodedata
        normalized_text = unicodedata.normalize('NFKD', normalized_text)
        
        return normalized_text
        
    except ImportError:
        print("pykakasi not available - Japanese text processing skipped")
        return text


def add_hebrew_diacritics(text: str) -> str:
    """Hebrew text normalization: adds diacritics to Hebrew text."""
    global _dicta
    
    try:
        if _dicta is None:
            from dicta_onnx import Dicta
            _dicta = Dicta()
        
        return _dicta.add_diacritics(text)
        
    except ImportError:
        print("dicta_onnx not available - Hebrew text processing skipped")
        return text
    except Exception as e:
        print(f"Hebrew diacritization failed: {e}")
        return text


def korean_normalize(text: str) -> str:
    """Korean text normalization: decompose syllables into Jamo for tokenization."""
    
    def decompose_hangul(char):
        """Decompose Korean syllable into Jamo components."""
        if not ('\uac00' <= char <= '\ud7af'):
            return char
        
        # Hangul decomposition formula
        base = ord(char) - 0xAC00
        initial = chr(0x1100 + base // (21 * 28))
        medial = chr(0x1161 + (base % (21 * 28)) // 28)
        final = chr(0x11A7 + base % 28) if base % 28 > 0 else ''
        
        return initial + medial + final
    
    # Decompose syllables and normalize punctuation
    result = ''.join(decompose_hangul(char) for char in text)    
    return result.strip()


def prepare_language(txt, language_id):
    # Language-specific text processing
    cangjie_converter = ChineseCangjieConverter()
    if language_id == 'zh':
        txt = cangjie_converter(txt)
    elif language_id == 'ja':
        txt = hiragana_normalize(txt)
    elif language_id == 'he':
        txt = add_hebrew_diacritics(txt)
    elif language_id == 'ko':
        txt = korean_normalize(txt)
    
    # Prepend language token
    if language_id:
        txt = f"[{language_id.lower()}]{txt}"
    return txt


def run_inference(
    text="The Lord of the Rings is the greatest work of literature.",
    language_id="en", 
    target_voice_path=None, 
    max_new_tokens=256,
    exaggeration=0.5, 
    output_dir="converted", 
    output_file_name="output.wav",
    apply_watermark=True,
):
    # Validate language_id
    if language_id and language_id.lower() not in SUPPORTED_LANGUAGES:
        supported_langs = ", ".join(SUPPORTED_LANGUAGES.keys())
        raise ValueError(
            f"Unsupported language_id '{language_id}'. "
            f"Supported languages: {supported_langs}"
        )
    model_id = "onnx-community/chatterbox-multilingual-ONNX"
    if not target_voice_path:
        target_voice_path = hf_hub_download(repo_id=model_id, filename="default_voice.wav", local_dir=output_dir)

    ## Load model
    speech_encoder_path = hf_hub_download(repo_id=model_id, filename="speech_encoder.onnx", local_dir=output_dir, subfolder='onnx')
    hf_hub_download(repo_id=model_id, filename="speech_encoder.onnx_data", local_dir=output_dir, subfolder='onnx')
    embed_tokens_path = hf_hub_download(repo_id=model_id, filename="embed_tokens.onnx", local_dir=output_dir, subfolder='onnx')
    hf_hub_download(repo_id=model_id, filename="embed_tokens.onnx_data", local_dir=output_dir, subfolder='onnx')
    conditional_decoder_path = hf_hub_download(repo_id=model_id, filename="conditional_decoder.onnx", local_dir=output_dir, subfolder='onnx')
    hf_hub_download(repo_id=model_id, filename="conditional_decoder.onnx_data", local_dir=output_dir, subfolder='onnx')
    language_model_path = hf_hub_download(repo_id=model_id, filename="language_model.onnx", local_dir=output_dir, subfolder='onnx')
    hf_hub_download(repo_id=model_id, filename="language_model.onnx_data", local_dir=output_dir, subfolder='onnx')

    # # Start inferense sessions
    speech_encoder_session = onnxruntime.InferenceSession(speech_encoder_path)
    embed_tokens_session = onnxruntime.InferenceSession(embed_tokens_path)
    llama_with_past_session = onnxruntime.InferenceSession(language_model_path)
    cond_decoder_session = onnxruntime.InferenceSession(conditional_decoder_path)

    def execute_text_to_audio_inference(text):
        print("Start inference script...")

        audio_values, _ = librosa.load(target_voice_path, sr=S3GEN_SR)
        audio_values = audio_values[np.newaxis, :].astype(np.float32)

        ## Prepare input
        tokenizer = AutoTokenizer.from_pretrained(model_id)
        text = prepare_language(text, language_id)
        input_ids = tokenizer(text, return_tensors="np")["input_ids"].astype(np.int64)

        position_ids = np.where(
            input_ids >= START_SPEECH_TOKEN,
            0,
            np.arange(input_ids.shape[1])[np.newaxis, :] - 1
        )

        ort_embed_tokens_inputs = {
            "input_ids": input_ids,
            "position_ids": position_ids.astype(np.int64),
            "exaggeration": np.array([exaggeration], dtype=np.float32)
        }

        ## Instantiate the logits processors.
        repetition_penalty = 1.2
        repetition_penalty_processor = RepetitionPenaltyLogitsProcessor(penalty=repetition_penalty)

        num_hidden_layers = 30
        num_key_value_heads = 16
        head_dim = 64

        generate_tokens = np.array([[START_SPEECH_TOKEN]])

        # ---- Generation Loop using kv_cache ----
        for i in tqdm(range(max_new_tokens), desc="Sampling", dynamic_ncols=True):

            inputs_embeds = embed_tokens_session.run(None, ort_embed_tokens_inputs)[0]
            if i == 0:
                ort_speech_encoder_input = {
                    "audio_values": audio_values,
                }
                cond_emb, prompt_token, ref_x_vector, prompt_feat = speech_encoder_session.run(None, ort_speech_encoder_input)
                inputs_embeds = np.concatenate((cond_emb, inputs_embeds), axis=1)

                ## Prepare llm inputs
                batch_size, seq_len, _ = inputs_embeds.shape
                past_key_values = {
                    f"past_key_values.{layer}.{kv}": np.zeros([batch_size, num_key_value_heads, 0, head_dim], dtype=np.float32)
                    for layer in range(num_hidden_layers)
                    for kv in ("key", "value")
                }
                attention_mask = np.ones((batch_size, seq_len), dtype=np.int64)
            logits, *present_key_values = llama_with_past_session.run(None, dict(
                inputs_embeds=inputs_embeds,
                attention_mask=attention_mask,
                **past_key_values,
            ))

            logits = logits[:, -1, :]
            next_token_logits = repetition_penalty_processor(generate_tokens, logits)

            next_token = np.argmax(next_token_logits, axis=-1, keepdims=True).astype(np.int64)
            generate_tokens = np.concatenate((generate_tokens, next_token), axis=-1)
            if (next_token.flatten() == STOP_SPEECH_TOKEN).all():
                break

            # Get embedding for the new token.
            position_ids = np.full(
                (input_ids.shape[0], 1),
                i + 1,
                dtype=np.int64,
            )
            ort_embed_tokens_inputs["input_ids"] = next_token
            ort_embed_tokens_inputs["position_ids"] = position_ids

            ## Update values for next generation loop
            attention_mask = np.concatenate([attention_mask, np.ones((batch_size, 1), dtype=np.int64)], axis=1)
            for j, key in enumerate(past_key_values):
                past_key_values[key] = present_key_values[j]

        speech_tokens = generate_tokens[:, 1:-1]
        speech_tokens = np.concatenate([prompt_token, speech_tokens], axis=1)
        return speech_tokens, ref_x_vector, prompt_feat

    speech_tokens, speaker_embeddings, speaker_features = execute_text_to_audio_inference(text)
    cond_incoder_input = {
        "speech_tokens": speech_tokens,
        "speaker_embeddings": speaker_embeddings,
        "speaker_features": speaker_features,
    }
    wav = cond_decoder_session.run(None, cond_incoder_input)[0]
    wav = np.squeeze(wav, axis=0)

    # Optional: Apply watermark
    if apply_watermark:
        import perth
        watermarker = perth.PerthImplicitWatermarker()
        wav = watermarker.apply_watermark(wav, sample_rate=S3GEN_SR)

    sf.write(output_file_name, wav, S3GEN_SR)
    print(f"{output_file_name} was successfully saved")

if __name__ == "__main__":
    run_inference(
        text="Bonjour, comment ça va? Ceci est le modèle de synthèse vocale multilingue Chatterbox, il prend en charge 23 langues.",
        language_id="fr",
        exaggeration=0.5,
        output_file_name="output.wav",
        apply_watermark=False,
    )

Acknowledgements

Built-in PerTh Watermarking for Responsible AI

Every audio file generated by Chatterbox includes Resemble AI's Perth (Perceptual Threshold) Watermarker - imperceptible neural watermarks that survive MP3 compression, audio editing, and common manipulations while maintaining nearly 100% detection accuracy.

Disclaimer

Don't use this model to do bad things. Prompts are sourced from freely available data on the internet.

Downloads last month
280
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for onnx-community/chatterbox-multilingual-ONNX

Quantized
(3)
this model