GitHub Repo | Technical Report | Join Us

👋 Contact us in Discord and WeChat

What's New

  • [2025.09.05] MiniCPM4.1 series are released! This series is a hybrid reasoning model, which can be used in both deep reasoning mode and non-reasoning mode. 🔥🔥🔥
  • [2025.06.06] MiniCPM4 series are released! This model achieves ultimate efficiency improvements while maintaining optimal performance at the same scale! It can achieve over 5x generation acceleration on typical end-side chips! You can find technical report here.🔥🔥🔥

MiniCPM4 and MiniCPM4.1 Series

MiniCPM4 and MiniCPM4.1 series are highly efficient large language models (LLMs) designed explicitly for end-side devices, which achieves this efficiency through systematic innovation in four key dimensions: model architecture, training data, training algorithms, and inference systems.

Introduction

MiniCPM4 and MiniCPM4.1 are extremely efficient edge-side large model that has undergone efficient optimization across four dimensions: model architecture, learning algorithms, training data, and inference systems, achieving ultimate efficiency improvements.

  • 🏗️ Efficient Model Architecture:

    • InfLLM v2 -- Trainable Sparse Attention Mechanism: Adopts a trainable sparse attention mechanism architecture where each token only needs to compute relevance with less than 5% of tokens in 128K long text processing, significantly reducing computational overhead for long texts
  • 🧠 Efficient Learning Algorithms:

    • Model Wind Tunnel 2.0 -- Efficient Predictable Scaling: Introduces scaling prediction methods for performance of downstream tasks, enabling more precise model training configuration search
    • BitCPM -- Ultimate Ternary Quantization: Compresses model parameter bit-width to 3 values, achieving 90% extreme model bit-width reduction
    • Efficient Training Engineering Optimization: Adopts FP8 low-precision computing technology combined with Multi-token Prediction training strategy
  • 📚 High-Quality Training Data:

    • UltraClean -- High-quality Pre-training Data Filtering and Generation: Builds iterative data cleaning strategies based on efficient data verification, open-sourcing high-quality Chinese and English pre-training dataset UltraFinweb
    • UltraChat v2 -- High-quality Supervised Fine-tuning Data Generation: Constructs large-scale high-quality supervised fine-tuning datasets covering multiple dimensions including knowledge-intensive data, reasoning-intensive data, instruction-following data, long text understanding data, and tool calling data
  • Efficient Inference System:

    • CPM.cu -- Lightweight and Efficient CUDA Inference Framework: Integrates sparse attention, model quantization, and speculative sampling to achieve efficient prefilling and decoding
    • ArkInfer -- Cross-platform Deployment System: Supports efficient deployment across multiple backend environments, providing flexible cross-platform adaptation capabilities

Usage

Inference with CPM.cu

We recommend using CPM.cu for the inference of MiniCPM4 and MiniCPM4.1. CPM.cu is a CUDA inference framework developed by OpenBMB, which integrates efficient sparse, speculative sampling, and quantization techniques, fully leveraging the efficiency advantages of MiniCPM4 and MiniCPM4.1.

You can install CPM.cu by running the following command:

git clone https://github.com/OpenBMB/cpm.cu.git --recursive
cd cpm.cu
python3 setup.py install

MiniCPM4.1 natively supports context lengths of up to 65,536(64k) tokens. To reproduce the long-text acceleration effect in the paper, we recommend using the LongRoPE factors that have been validated. Change the rope_scaling field in the config.json file as the following to enable LongRoPE.

{
    ...,
    "rope_scaling": {
        "rope_type": "longrope", 
        "long_factor": [0.9982316082870437, 1.033048153422584, 1.0749920956484724, 1.1255096879436193, 1.1863348602111476, 1.259543828902579, 1.3476188888731149, 1.4535223827776373, 1.5807816745852985, 1.7335856049489526, 1.9168922912975785, 2.1365471404135326, 2.3994084200118646, 2.713475511863602, 3.0880118452194134, 3.533650295140154, 4.062463396503134, 4.687974098908333, 5.425075306704039, 6.289818967956352, 7.29902962722721, 8.6357018163639, 10.210822723989212, 12.053807765671676, 14.193944598909404, 16.65780676784363, 19.463620727694074, 22.628311203524586, 26.150106147261315, 30.02526691405111, 34.23183327975347, 38.73811934094828, 43.502489489729555, 48.47627117965394, 53.61139491762471, 58.857366522037935, 64.16798299215064, 69.51359464319125, 74.86555458220285, 80.21497790341579, 85.55322183307433, 90.89611806932027, 96.26245306514224, 101.68269304046481, 107.18619510219668, 112.82253283014026, 118.63764063163615, 119.88866203644656, 120.9462882391725, 121.837565139014, 122.58663780572562, 123.2147719894291, 123.74049454862576, 124.17980424685767, 124.54641761955492, 124.85202548028222, 125.10654406389756, 125.31835105170659, 125.49450117164764, 125.64091910903052, 125.76256945356558, 125.86360463815589, 125.94749252260765, 126.01712561287873],
        "short_factor": [0.9982316082870437, 1.033048153422584, 1.0749920956484724, 1.1255096879436193, 1.1863348602111476, 1.259543828902579, 1.3476188888731149, 1.4535223827776373, 1.5807816745852985, 1.7335856049489526, 1.9168922912975785, 2.1365471404135326, 2.3994084200118646, 2.713475511863602, 3.0880118452194134, 3.533650295140154, 4.062463396503134, 4.687974098908333, 5.425075306704039, 6.289818967956352, 7.29902962722721, 8.6357018163639, 10.210822723989212, 12.053807765671676, 14.193944598909404, 16.65780676784363, 19.463620727694074, 22.628311203524586, 26.150106147261315, 30.02526691405111, 34.23183327975347, 38.73811934094828, 43.502489489729555, 48.47627117965394, 53.61139491762471, 58.857366522037935, 64.16798299215064, 69.51359464319125, 74.86555458220285, 80.21497790341579, 85.55322183307433, 90.89611806932027, 96.26245306514224, 101.68269304046481, 107.18619510219668, 112.82253283014026, 118.63764063163615, 119.88866203644656, 120.9462882391725, 121.837565139014, 122.58663780572562, 123.2147719894291, 123.74049454862576, 124.17980424685767, 124.54641761955492, 124.85202548028222, 125.10654406389756, 125.31835105170659, 125.49450117164764, 125.64091910903052, 125.76256945356558, 125.86360463815589, 125.94749252260765, 126.01712561287873],
        "original_max_position_embeddings": 65536
    }
}

After modification, you can run the following command to reproduce the long-context acceleration effect (the script will automatically download the model weights from HuggingFace)

python3 tests/test_generate.py

You can run the following command to infer with EAGLE3 speculative decoding algorithm.

python3 -m cpmcu.cli \
    --model-path $BASE_MODEL_PATH \
    --draft-model-path $EAGLE3_DRAFT_MODEL_PATH \
    --prompt-text "Write an article about Artificial Intelligence." \
    --use-eagle3 true

For more details about CPM.cu, please refer to the repo CPM.cu.

Hybird Reasoning Mode

MiniCPM4.1 supports hybrid reasoning mode, which can be used in both deep reasoning mode and non-reasoning mode. To enable hybrid reasoning mode. User can set enable_thinking=True in tokenizer.apply_chat_template to enable hybrid reasoning mode, and set enable_thinking=False to enable non-reasoning mode. Similarly, user can directly add /no_think at the end of the query to enable non-reasoning mode. If not add any special token or add /think at the end of the query, the model will enable reasoning mode.

# Enable reasoning mode
prompt_text = tokenizer.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
    enable_thinking=True
)
# Enable non-reasoning mode
prompt_text = tokenizer.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
    enable_thinking=False
)

Inference with Transformers

from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
torch.manual_seed(0)

path = 'openbmb/MiniCPM4.1-8B'
device = "cuda"
tokenizer = AutoTokenizer.from_pretrained(path)
model = AutoModelForCausalLM.from_pretrained(path, torch_dtype=torch.bfloat16, device_map=device, trust_remote_code=True)

# User can directly use the chat interface
# responds, history = model.chat(tokenizer, "Write an article about Artificial Intelligence.", temperature=0.7, top_p=0.7)
# print(responds)

# User can also use the generate interface
messages = [
    {"role": "user", "content": "Write an article about Artificial Intelligence."},
]
prompt_text = tokenizer.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
model_inputs = tokenizer([prompt_text], return_tensors="pt").to(device)

model_outputs = model.generate(
    **model_inputs,
    max_new_tokens=32768,
    top_p=0.95,
    temperature=0.6
)
output_token_ids = [
    model_outputs[i][len(model_inputs[i]):] for i in range(len(model_inputs['input_ids']))
]

responses = tokenizer.batch_decode(output_token_ids, skip_special_tokens=True)[0]
print(responses)

MiniCPM4.1-8B supports InfLLM v2, a sparse attention mechanism designed for efficient long-sequence inference. It requires the infllmv2_cuda_impl library.

You can install it by running the following command:

git clone -b feature_infer https://github.com/OpenBMB/infllmv2_cuda_impl.git
cd infllmv2_cuda_impl
git submodule update --init --recursive
pip install -e . # or python setup.py install 

To enable InfLLM v2, you need to add the sparse_config field in config.json:

{
    ...,
    "sparse_config": {
        "kernel_size": 32,
        "kernel_stride": 16,
        "init_blocks": 1,
        "block_size": 64,
        "window_size": 2048,
        "topk": 64,
        "use_nope": false,
        "dense_len": 8192
    }
}

These parameters control the behavior of InfLLM v2:

  • kernel_size (default: 32): The size of semantic kernels.
  • kernel_stride (default: 16): The stride between adjacent kernels.
  • init_blocks (default: 1): The number of initial blocks that every query token attends to. This ensures attention to the beginning of the sequence.
  • block_size (default: 64): The block size for key-value blocks.
  • window_size (default: 2048): The size of the local sliding window.
  • topk (default: 64): The specifies that each token computes attention with only the top-k most relevant key-value blocks.
  • use_nope (default: false): Whether to use the NOPE technique in block selection for improved performance.
  • dense_len (default: 8192): Since Sparse Attention offers limited benefits for short sequences, the model can use standard (dense) attention for shorter texts. The model will use dense attention for sequences with a token length below dense_len and switch to sparse attention for sequences exceeding this length. Set this to -1 to always use sparse attention regardless of sequence length.

MiniCPM4.1 natively supports context lengths of up to 65,536(64k) tokens. For conversations where the total length (including both input and output) significantly exceeds this limit, we recommend using RoPE scaling techniques for effective handling of long texts. We have validated the model's performance on context lengths of up to 131,072 tokens by modifying the LongRoPE factor.

You can apply the LongRoPE factor modification by modifying the model files. Specifically, in the config.json file, adjust the rope_scaling fields.

{
    ...,
    "rope_scaling": {
        "rope_type": "longrope", 
        "long_factor": [0.9982316082870437, 1.033048153422584, 1.0749920956484724, 1.1255096879436193, 1.1863348602111476, 1.259543828902579, 1.3476188888731149, 1.4535223827776373, 1.5807816745852985, 1.7335856049489526, 1.9168922912975785, 2.1365471404135326, 2.3994084200118646, 2.713475511863602, 3.0880118452194134, 3.533650295140154, 4.062463396503134, 4.687974098908333, 5.425075306704039, 6.289818967956352, 7.29902962722721, 8.6357018163639, 10.210822723989212, 12.053807765671676, 14.193944598909404, 16.65780676784363, 19.463620727694074, 22.628311203524586, 26.150106147261315, 30.02526691405111, 34.23183327975347, 38.73811934094828, 43.502489489729555, 48.47627117965394, 53.61139491762471, 58.857366522037935, 64.16798299215064, 69.51359464319125, 74.86555458220285, 80.21497790341579, 85.55322183307433, 90.89611806932027, 96.26245306514224, 101.68269304046481, 107.18619510219668, 112.82253283014026, 118.63764063163615, 119.88866203644656, 120.9462882391725, 121.837565139014, 122.58663780572562, 123.2147719894291, 123.74049454862576, 124.17980424685767, 124.54641761955492, 124.85202548028222, 125.10654406389756, 125.31835105170659, 125.49450117164764, 125.64091910903052, 125.76256945356558, 125.86360463815589, 125.94749252260765, 126.01712561287873],
        "short_factor": [0.9982316082870437, 1.033048153422584, 1.0749920956484724, 1.1255096879436193, 1.1863348602111476, 1.259543828902579, 1.3476188888731149, 1.4535223827776373, 1.5807816745852985, 1.7335856049489526, 1.9168922912975785, 2.1365471404135326, 2.3994084200118646, 2.713475511863602, 3.0880118452194134, 3.533650295140154, 4.062463396503134, 4.687974098908333, 5.425075306704039, 6.289818967956352, 7.29902962722721, 8.6357018163639, 10.210822723989212, 12.053807765671676, 14.193944598909404, 16.65780676784363, 19.463620727694074, 22.628311203524586, 26.150106147261315, 30.02526691405111, 34.23183327975347, 38.73811934094828, 43.502489489729555, 48.47627117965394, 53.61139491762471, 58.857366522037935, 64.16798299215064, 69.51359464319125, 74.86555458220285, 80.21497790341579, 85.55322183307433, 90.89611806932027, 96.26245306514224, 101.68269304046481, 107.18619510219668, 112.82253283014026, 118.63764063163615, 119.88866203644656, 120.9462882391725, 121.837565139014, 122.58663780572562, 123.2147719894291, 123.74049454862576, 124.17980424685767, 124.54641761955492, 124.85202548028222, 125.10654406389756, 125.31835105170659, 125.49450117164764, 125.64091910903052, 125.76256945356558, 125.86360463815589, 125.94749252260765, 126.01712561287873],
        "original_max_position_embeddings": 65536
    }
}

Inference with SGLang

Speculative Decoding

For accelerated inference with speculative decoding, follow these steps:

1. Download MiniCPM4.1 Draft Model

First, download the MiniCPM4.1 draft model:

cd /your_path
git clone https://huggingface.co/openbmb/MiniCPM4.1-8B-Eagle3
2. Install EAGLE3-Compatible SGLang

The EAGLE3 adaptation PR has been submitted. For now, use our repository for installation:

git clone https://github.com/LDLINGLINGLING/sglang.git
cd sglang
pip install -e .
3. Launch SGLang Server with Speculative Decoding

Start the SGLang server with speculative decoding enabled:

python -m sglang.launch_server \
  --model-path "openbmb/MiniCPM4.1-8B" \
  --host "127.0.0.1" \
  --port 30002 \
  --mem-fraction-static 0.9 \
  --speculative-algorithm EAGLE3 \
  --speculative-draft-model-path "your/path/MiniCPM4_1-8B-Eagle3-bf16" \
  --speculative-num-steps 3 \
  --speculative-eagle-topk 1 \
  --speculative-num-draft-tokens 32 \
  --temperature 0.7
4. Client Usage

The client usage remains the same for both standard and speculative decoding:

import openai

client = openai.Client(base_url=f"http://localhost:30002/v1", api_key="None")

response = client.chat.completions.create(
    model="openbmb/MiniCPM4.1-8B",
    messages=[
        {"role": "user", "content": "Write an article about Artificial Intelligence."},
    ],
    temperature=0.6,
    max_tokens=32768,
)

print(response.choices[0].message.content)

Note: Make sure to update the port number in the client code to match the server port (30002 in the speculative decoding example).

Configuration Parameters
  • --speculative-algorithm EAGLE3: Enables EAGLE3 speculative decoding
  • --speculative-draft-model-path: Path to the draft model for speculation
  • --speculative-num-steps: Number of speculative steps (default: 3)
  • --speculative-eagle-topk: Top-k parameter for EAGLE (default: 1)
  • --speculative-num-draft-tokens: Number of draft tokens (default: 32)
  • --mem-fraction-static: Memory fraction for static allocation (default: 0.9)

Standard Inference (Without Speculative Decoding)

For now, you need to install our forked version of SGLang.

git clone -b openbmb https://github.com/OpenBMB/sglang.git
cd sglang

pip install --upgrade pip
pip install -e "python[all]"

You can start the inference server by running the following command:

python -m sglang.launch_server --model openbmb/MiniCPM4.1-8B --trust-remote-code --port 30000 --chat-template chatml

Then you can use the chat interface by running the following command:

import openai

client = openai.Client(base_url=f"http://localhost:30000/v1", api_key="None")

response = client.chat.completions.create(
    model="openbmb/MiniCPM4.1-8B",
    messages=[
        {"role": "user", "content": "Write an article about Artificial Intelligence."},
    ],
    temperature=0.6,
    max_tokens=32768,
)

print(response.choices[0].message.content)

Inference with vLLM

Speculative Decoding

For accelerated inference with speculative decoding using vLLM, follow these steps:

1. Download MiniCPM4.1 Draft Model

First, download the MiniCPM4.1 draft model:

cd /your_path
git clone https://huggingface.co/openbmb/MiniCPM4.1-8B-Eagle3
2. Install EAGLE3-Compatible vLLM

The EAGLE3 vLLM PR has been submitted. For now, use our repository for installation:

git clone https://github.com/LDLINGLINGLING/vllm.git
cd vllm 
pip install -e .
3. Launch vLLM Server with Speculative Decoding

Start the vLLM inference server with speculative decoding enabled. Make sure to update the model path in the speculative-config to point to your downloaded MiniCPM4_1-8B-Eagle3-bf16 folder:

VLLM_USE_V1=1 \
vllm serve openbmb/MiniCPM4.1-8B \
--seed 42 \
--trust-remote-code \
--speculative-config '{
  "model": "your/path/MiniCPM4_1-8B-Eagle3-bf16",
  "num_speculative_tokens": 3,
  "method": "eagle3",
  "draft_tensor_parallel_size": 1
}'
4. Client Usage Example

The client usage remains the same for both standard and speculative decoding:

import openai

client = openai.Client(base_url="http://localhost:8000/v1", api_key="EMPTY")

response = client.chat.completions.create(
    model="openbmb/MiniCPM4.1-8B",
    messages=[
        {"role": "user", "content": "Write an article about Artificial Intelligence."},
    ],
    temperature=0.6,
    max_tokens=32768,
    extra_body=dict(add_special_tokens=True),  # Ensures special tokens are added for chat template
)

print(response.choices[0].message.content)
vLLM Configuration Parameters
  • VLLM_USE_V1=1: Enables vLLM v1 API
  • --speculative-config: JSON configuration for speculative decoding
    • model: Path to the draft model for speculation
    • num_speculative_tokens: Number of speculative tokens (default: 3)
    • method: Speculative decoding method (eagle3)
    • draft_tensor_parallel_size: Tensor parallel size for draft model (default: 1)
  • --seed: Random seed for reproducibility
  • --trust-remote-code: Allow execution of remote code for custom models

Standard Inference (Without Speculative Decoding)

For now, you need to install the latest version of vLLM.

pip install -U vllm \
    --pre \
    --extra-index-url https://wheels.vllm.ai/nightly

Then you can inference MiniCPM4.1-8B with vLLM:

from transformers import AutoTokenizer
from vllm import LLM, SamplingParams

model_name = "openbmb/MiniCPM4.1-8B"
prompt = [{"role": "user", "content": "Write an article about Artificial Intelligence."}]

tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
input_text = tokenizer.apply_chat_template(prompt, tokenize=False, add_generation_prompt=True)

llm = LLM(
    model=model_name,
    trust_remote_code=True,
    max_num_batched_tokens=65536,
    dtype="bfloat16", 
    gpu_memory_utilization=0.8, 
)
sampling_params = SamplingParams(top_p=0.95, temperature=0.6, max_tokens=32768)

outputs = llm.generate(prompts=input_text, sampling_params=sampling_params)

print(outputs[0].outputs[0].text)

Also, you can start the inference server by running the following command:

Note: In vLLM's chat API, add_special_tokens is False by default. This means important special tokens—such as the beginning-of-sequence (BOS) token—will not be added automatically. To ensure the input prompt is correctly formatted for the model, you should explicitly set extra_body={"add_special_tokens": True}.

vllm serve openbmb/MiniCPM4.1-8B 

Then you can use the chat interface by running the following code:

import openai

client = openai.Client(base_url="http://localhost:8000/v1", api_key="EMPTY")

response = client.chat.completions.create(
    model="openbmb/MiniCPM4.1-8B",
    messages=[
        {"role": "user", "content": "Write an article about Artificial Intelligence."},
    ],
    temperature=0.6,
    max_tokens=32768,
    extra_body=dict(add_special_tokens=True),  # Ensures special tokens are added for chat template
    
)

print(response.choices[0].message.content)

Evaluation Results

On two typical end-side chips, Jetson AGX Orin and RTX 4090, MiniCPM4 demonstrates significantly faster processing speed compared to similar-size models in long text processing tasks. As text length increases, MiniCPM4's efficiency advantage becomes more pronounced. On the Jetson AGX Orin platform, compared to Qwen3-8B, MiniCPM4 achieves approximately 7x decoding speed improvement.

benchmark

MiniCPM4.1 achieves 3x decoding speed improvement in reasoning.

benchmark

Comprehensive Evaluation

MiniCPM4.1 launches end-side versions with 8B parameter scale, both achieving best-in-class performance in their respective categories.

benchmark

Long Text Evaluation

MiniCPM4 is pre-trained on 32K long texts and achieves length extension through YaRN technology. In the 128K long text needle-in-a-haystack task, MiniCPM4 demonstrates outstanding performance.

long-niah

Statement

  • As a language model, MiniCPM generates content by learning from a vast amount of text.
  • However, it does not possess the ability to comprehend or express personal opinions or value judgments.
  • Any content generated by MiniCPM does not represent the viewpoints or positions of the model developers.
  • Therefore, when using content generated by MiniCPM, users should take full responsibility for evaluating and verifying it on their own.

LICENSE

  • This repository and MiniCPM models are released under the Apache-2.0 License.

Citation

  • Please cite our paper if you find our work valuable.
@article{minicpm4,
  title={{MiniCPM4}: Ultra-Efficient LLMs on End Devices},
  author={MiniCPM Team},
  year={2025}
}
Downloads last month
20
Safetensors
Model size
8.19B params
Tensor type
BF16
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 1 Ask for provider support

Model tree for openbmb/MiniCPM4.1-8B

Quantizations
3 models

Collection including openbmb/MiniCPM4.1-8B