opencv_zoo
Collection
27 items
β’
Updated
β’
2
MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications
MobileNetV2: Inverted Residuals and Linear Bottlenecks
Note:
image_classification_mobilenetvX_2022apr_int8bq.onnx
represents the block-quantized version in int8 precision and is generated using block_quantize.py with block_size=64
.Results of accuracy evaluation with tools/eval.
Models | Top-1 Accuracy | Top-5 Accuracy |
---|---|---|
MobileNet V1 | 67.64 | 87.97 |
MobileNet V1 block | 67.21 | 87.62 |
MobileNet V1 quant | 55.53 | 78.74 |
MobileNet V2 | 69.44 | 89.23 |
MobileNet V2 block | 68.66 | 88.90 |
MobileNet V2 quant | 68.37 | 88.56 |
*: 'quant' stands for 'quantized'. **: 'block' stands for 'blockwise quantized'.
Run the following command to try the demo:
# MobileNet V1
python demo.py --input /path/to/image
# MobileNet V2
python demo.py --input /path/to/image --model v2
# get help regarding various parameters
python demo.py --help
Install latest OpenCV and CMake >= 3.24.0 to get started with:
# A typical and default installation path of OpenCV is /usr/local
cmake -B build -D OPENCV_INSTALLATION_PATH=/path/to/opencv/installation .
cmake --build build
# detect on camera input
./build/opencv_zoo_image_classification_mobilenet
# detect on an image
./build/opencv_zoo_image_classification_mobilenet -m=/path/to/model -i=/path/to/image -v
# get help messages
./build/opencv_zoo_image_classification_mobilenet -h
All files in this directory are licensed under Apache 2.0 License.