gursimar-singh's picture
Added dexined quantized model for edge detection (#272)
07ad80f
import cv2 as cv
import numpy as np
class Dexined:
def __init__(self, modelPath='edge_detection_dexined_2024sep.onnx', backendId=0, targetId=0):
self._modelPath = modelPath
self._backendId = backendId
self._targetId = targetId
# Load the model
self._model = cv.dnn.readNetFromONNX(self._modelPath)
self.setBackendAndTarget(self._backendId, self._targetId)
@property
def name(self):
return self.__class__.__name__
def setBackendAndTarget(self, backendId, targetId):
self._backendId = backendId
self._targetId = targetId
self._model.setPreferableBackend(self._backendId)
self._model.setPreferableTarget(self._targetId)
@staticmethod
def sigmoid(x):
return 1.0 / (1.0 + np.exp(-x))
def postProcessing(self, output, shape):
h, w = shape
preds = []
for p in output:
img = self.sigmoid(p)
img = np.squeeze(img)
img = cv.normalize(img, None, 0, 255, cv.NORM_MINMAX, cv.CV_8U)
img = cv.resize(img, (w, h))
preds.append(img)
fuse = preds[-1]
ave = np.array(preds, dtype=np.float32)
ave = np.uint8(np.mean(ave, axis=0))
return fuse, ave
def infer(self, image):
inp = cv.dnn.blobFromImage(image, 1.0, (512, 512), (103.5, 116.2, 123.6), swapRB=False, crop=False)
self._model.setInput(inp)
# Forward pass through the model
out = self._model.forward()
result, _ = self.postProcessing(out, image.shape[:2])
return result