|
import cv2 as cv |
|
import numpy as np |
|
|
|
class Dexined: |
|
def __init__(self, modelPath='edge_detection_dexined_2024sep.onnx', backendId=0, targetId=0): |
|
self._modelPath = modelPath |
|
self._backendId = backendId |
|
self._targetId = targetId |
|
|
|
|
|
self._model = cv.dnn.readNetFromONNX(self._modelPath) |
|
self.setBackendAndTarget(self._backendId, self._targetId) |
|
|
|
@property |
|
def name(self): |
|
return self.__class__.__name__ |
|
|
|
def setBackendAndTarget(self, backendId, targetId): |
|
self._backendId = backendId |
|
self._targetId = targetId |
|
self._model.setPreferableBackend(self._backendId) |
|
self._model.setPreferableTarget(self._targetId) |
|
|
|
@staticmethod |
|
def sigmoid(x): |
|
return 1.0 / (1.0 + np.exp(-x)) |
|
|
|
def postProcessing(self, output, shape): |
|
h, w = shape |
|
preds = [] |
|
for p in output: |
|
img = self.sigmoid(p) |
|
img = np.squeeze(img) |
|
img = cv.normalize(img, None, 0, 255, cv.NORM_MINMAX, cv.CV_8U) |
|
img = cv.resize(img, (w, h)) |
|
preds.append(img) |
|
fuse = preds[-1] |
|
ave = np.array(preds, dtype=np.float32) |
|
ave = np.uint8(np.mean(ave, axis=0)) |
|
return fuse, ave |
|
|
|
def infer(self, image): |
|
inp = cv.dnn.blobFromImage(image, 1.0, (512, 512), (103.5, 116.2, 123.6), swapRB=False, crop=False) |
|
self._model.setInput(inp) |
|
|
|
|
|
out = self._model.forward() |
|
result, _ = self.postProcessing(out, image.shape[:2]) |
|
|
|
return result |
|
|