Patrick Keane
Add SFace face recognizer cpp demo (#259)
92f2071
#include "opencv2/opencv.hpp"
#include "opencv2/core/types.hpp"
#include <string>
#include <vector>
const std::vector<std::pair<int, int>> backend_target_pairs = {
{cv::dnn::DNN_BACKEND_OPENCV, cv::dnn::DNN_TARGET_CPU},
{cv::dnn::DNN_BACKEND_CUDA, cv::dnn::DNN_TARGET_CUDA},
{cv::dnn::DNN_BACKEND_CUDA, cv::dnn::DNN_TARGET_CUDA_FP16},
{cv::dnn::DNN_BACKEND_TIMVX, cv::dnn::DNN_TARGET_NPU},
{cv::dnn::DNN_BACKEND_CANN, cv::dnn::DNN_TARGET_NPU}
};
class YuNet
{
public:
YuNet(const std::string& model_path,
const cv::Size& input_size,
const float conf_threshold,
const float nms_threshold,
const int top_k,
const int backend_id,
const int target_id)
{
_detector = cv::FaceDetectorYN::create(
model_path, "", input_size, conf_threshold, nms_threshold, top_k, backend_id, target_id);
}
void setInputSize(const cv::Size& input_size)
{
_detector->setInputSize(input_size);
}
void setTopK(const int top_k)
{
_detector->setTopK(top_k);
}
cv::Mat infer(const cv::Mat& image)
{
cv::Mat result;
_detector->detect(image, result);
return result;
}
private:
cv::Ptr<cv::FaceDetectorYN> _detector;
};
class SFace
{
public:
SFace(const std::string& model_path,
const int backend_id,
const int target_id,
const int distance_type)
: _distance_type(static_cast<cv::FaceRecognizerSF::DisType>(distance_type))
{
_recognizer = cv::FaceRecognizerSF::create(model_path, "", backend_id, target_id);
}
cv::Mat extractFeatures(const cv::Mat& orig_image, const cv::Mat& face_image)
{
// Align and crop detected face from original image
cv::Mat target_aligned;
_recognizer->alignCrop(orig_image, face_image, target_aligned);
// Extract features from cropped detected face
cv::Mat target_features;
_recognizer->feature(target_aligned, target_features);
return target_features.clone();
}
std::pair<double, bool> matchFeatures(const cv::Mat& target_features, const cv::Mat& query_features)
{
const double score = _recognizer->match(target_features, query_features, _distance_type);
if (_distance_type == cv::FaceRecognizerSF::DisType::FR_COSINE)
{
return {score, score >= _threshold_cosine};
}
return {score, score <= _threshold_norml2};
}
private:
cv::Ptr<cv::FaceRecognizerSF> _recognizer;
cv::FaceRecognizerSF::DisType _distance_type;
double _threshold_cosine = 0.363;
double _threshold_norml2 = 1.128;
};
cv::Mat visualize(const cv::Mat& image,
const cv::Mat& faces,
const std::vector<std::pair<double, bool>>& matches,
const float fps = -0.1F,
const cv::Size& target_size = cv::Size(512, 512))
{
static const cv::Scalar matched_box_color{0, 255, 0};
static const cv::Scalar mismatched_box_color{0, 0, 255};
if (fps >= 0)
{
cv::Mat output_image = image.clone();
const int x1 = static_cast<int>(faces.at<float>(0, 0));
const int y1 = static_cast<int>(faces.at<float>(0, 1));
const int w = static_cast<int>(faces.at<float>(0, 2));
const int h = static_cast<int>(faces.at<float>(0, 3));
const auto match = matches.at(0);
cv::Scalar box_color = match.second ? matched_box_color : mismatched_box_color;
// Draw bounding box
cv::rectangle(output_image, cv::Rect(x1, y1, w, h), box_color, 2);
// Draw match score
cv::putText(output_image, cv::format("%.4f", match.first), cv::Point(x1, y1+12), cv::FONT_HERSHEY_DUPLEX, 0.30, box_color);
// Draw FPS
cv::putText(output_image, cv::format("FPS: %.2f", fps), cv::Point(0, 15), cv::FONT_HERSHEY_SIMPLEX, 0.5, box_color, 2);
return output_image;
}
cv::Mat output_image = cv::Mat::zeros(target_size, CV_8UC3);
// Determine new height and width of image with aspect ratio of original image
const double ratio = std::min(static_cast<double>(target_size.height) / image.rows,
static_cast<double>(target_size.width) / image.cols);
const int new_height = static_cast<int>(image.rows * ratio);
const int new_width = static_cast<int>(image.cols * ratio);
// Resize the original image, maintaining aspect ratio
cv::Mat resize_out;
cv::resize(image, resize_out, cv::Size(new_width, new_height), cv::INTER_LINEAR);
// Determine top left corner in resized dimensions
const int top = std::max(0, target_size.height - new_height) / 2;
const int left = std::max(0, target_size.width - new_width) / 2;
// Copy resized image into target output image
const cv::Rect roi = cv::Rect(cv::Point(left, top), cv::Size(new_width, new_height));
cv::Mat out_sub_image = output_image(roi);
resize_out.copyTo(out_sub_image);
for (int i = 0; i < faces.rows; ++i)
{
const int x1 = static_cast<int>(faces.at<float>(i, 0) * ratio) + left;
const int y1 = static_cast<int>(faces.at<float>(i, 1) * ratio) + top;
const int w = static_cast<int>(faces.at<float>(i, 2) * ratio);
const int h = static_cast<int>(faces.at<float>(i, 3) * ratio);
const auto match = matches.at(i);
cv::Scalar box_color = match.second ? matched_box_color : mismatched_box_color;
// Draw bounding box
cv::rectangle(output_image, cv::Rect(x1, y1, w, h), box_color, 2);
// Draw match score
cv::putText(output_image, cv::format("%.4f", match.first), cv::Point(x1, y1+12), cv::FONT_HERSHEY_DUPLEX, 0.30, box_color);
}
return output_image;
}
int main(int argc, char** argv)
{
cv::CommandLineParser parser(argc, argv,
// General options
"{help h | | Print this message}"
"{backend_target b | 0 | Set DNN backend target pair:\n"
"0: (default) OpenCV implementation + CPU,\n"
"1: CUDA + GPU (CUDA),\n"
"2: CUDA + GPU (CUDA FP16),\n"
"3: TIM-VX + NPU,\n"
"4: CANN + NPU}"
"{save s | false | Whether to save result image or not}"
"{vis v | false | Whether to visualize result image or not}"
// SFace options
"{target_face t | | Set path to input image 1 (target face)}"
"{query_face q | | Set path to input image 2 (query face), omit if using camera}"
"{model m | face_recognition_sface_2021dec.onnx | Set path to the model}"
"{distance_type d | 0 | 0 = cosine, 1 = norm_l1}"
// YuNet options
"{yunet_model | ../face_detection_yunet/face_detection_yunet_2023mar.onnx | Set path to the YuNet model}"
"{detect_threshold | 0.9 | Set the minimum confidence for the model\n"
"to identify a face. Filter out faces of\n"
"conf < conf_threshold}"
"{nms_threshold | 0.3 | Set the threshold to suppress overlapped boxes.\n"
"Suppress boxes if IoU(box1, box2) >= nms_threshold\n"
", the one of higher score is kept.}"
"{top_k | 5000 | Keep top_k bounding boxes before NMS}"
);
if (parser.has("help"))
{
parser.printMessage();
return 0;
}
// General CLI options
const int backend = parser.get<int>("backend_target");
const bool save_flag = parser.get<bool>("save");
const bool vis_flag = parser.get<bool>("vis");
const int backend_id = backend_target_pairs.at(backend).first;
const int target_id = backend_target_pairs.at(backend).second;
// YuNet CLI options
const std::string detector_model_path = parser.get<std::string>("yunet_model");
const float detect_threshold = parser.get<float>("detect_threshold");
const float nms_threshold = parser.get<float>("nms_threshold");
const int top_k = parser.get<int>("top_k");
// Use YuNet as the detector backend
auto face_detector = YuNet(
detector_model_path, cv::Size(320, 320), detect_threshold, nms_threshold, top_k, backend_id, target_id);
// SFace CLI options
const std::string target_path = parser.get<std::string>("target_face");
const std::string query_path = parser.get<std::string>("query_face");
const std::string model_path = parser.get<std::string>("model");
const int distance_type = parser.get<int>("distance_type");
auto face_recognizer = SFace(model_path, backend_id, target_id, distance_type);
if (target_path.empty())
{
CV_Error(cv::Error::StsError, "Path to target image " + target_path + " not found");
}
cv::Mat target_image = cv::imread(target_path);
// Detect single face in target image
face_detector.setInputSize(target_image.size());
face_detector.setTopK(1);
cv::Mat target_face = face_detector.infer(target_image);
// Extract features from target face
cv::Mat target_features = face_recognizer.extractFeatures(target_image, target_face.row(0));
if (!query_path.empty()) // use image
{
// Detect any faces in query image
cv::Mat query_image = cv::imread(query_path);
face_detector.setInputSize(query_image.size());
face_detector.setTopK(5000);
cv::Mat query_faces = face_detector.infer(query_image);
// Store match scores for visualization
std::vector<std::pair<double, bool>> matches;
for (int i = 0; i < query_faces.rows; ++i)
{
// Extract features from query face
cv::Mat query_features = face_recognizer.extractFeatures(query_image, query_faces.row(i));
// Measure similarity of target face to query face
const auto match = face_recognizer.matchFeatures(target_features, query_features);
matches.push_back(match);
const int x1 = static_cast<int>(query_faces.at<float>(i, 0));
const int y1 = static_cast<int>(query_faces.at<float>(i, 1));
const int w = static_cast<int>(query_faces.at<float>(i, 2));
const int h = static_cast<int>(query_faces.at<float>(i, 3));
const float conf = query_faces.at<float>(i, 14);
std::cout << cv::format("%d: x1=%d, y1=%d, w=%d, h=%d, conf=%.4f, match=%.4f\n", i, x1, y1, w, h, conf, match.first);
}
if (save_flag || vis_flag)
{
auto vis_target = visualize(target_image, target_face, {{1.0, true}});
auto vis_query = visualize(query_image, query_faces, matches);
cv::Mat output_image;
cv::hconcat(vis_target, vis_query, output_image);
if (save_flag)
{
std::cout << "Results are saved to result.jpg\n";
cv::imwrite("result.jpg", output_image);
}
if (vis_flag)
{
cv::namedWindow(query_path, cv::WINDOW_AUTOSIZE);
cv::imshow(query_path, output_image);
cv::waitKey(0);
}
}
}
else // use video capture
{
const int device_id = 0;
auto cap = cv::VideoCapture(device_id);
const int w = static_cast<int>(cap.get(cv::CAP_PROP_FRAME_WIDTH));
const int h = static_cast<int>(cap.get(cv::CAP_PROP_FRAME_HEIGHT));
face_detector.setInputSize(cv::Size(w, h));
auto tick_meter = cv::TickMeter();
cv::Mat query_frame;
while (cv::waitKey(1) < 0)
{
bool has_frame = cap.read(query_frame);
if (!has_frame)
{
std::cout << "No frames grabbed! Exiting ...\n";
break;
}
tick_meter.start();
// Detect faces from webcam image
cv::Mat query_faces = face_detector.infer(query_frame);
tick_meter.stop();
// Extract features from query face
cv::Mat query_features = face_recognizer.extractFeatures(query_frame, query_faces.row(0));
// Measure similarity of target face to query face
const auto match = face_recognizer.matchFeatures(target_features, query_features);
const auto fps = static_cast<float>(tick_meter.getFPS());
auto vis_target = visualize(target_image, target_face, {{1.0, true}}, -0.1F, cv::Size(w, h));
auto vis_query = visualize(query_frame, query_faces, {match}, fps);
cv::Mat output_image;
cv::hconcat(vis_target, vis_query, output_image);
// Visualize in a new window
cv::imshow("SFace Demo", output_image);
tick_meter.reset();
}
}
return 0;
}