|
import sys |
|
import argparse |
|
|
|
import numpy as np |
|
import cv2 as cv |
|
|
|
|
|
opencv_python_version = lambda str_version: tuple(map(int, (str_version.split(".")))) |
|
assert opencv_python_version(cv.__version__) >= opencv_python_version("4.10.0"), \ |
|
"Please install latest opencv-python for benchmark: python3 -m pip install --upgrade opencv-python" |
|
|
|
from mp_handpose import MPHandPose |
|
|
|
sys.path.append('../palm_detection_mediapipe') |
|
from mp_palmdet import MPPalmDet |
|
|
|
|
|
backend_target_pairs = [ |
|
[cv.dnn.DNN_BACKEND_OPENCV, cv.dnn.DNN_TARGET_CPU], |
|
[cv.dnn.DNN_BACKEND_CUDA, cv.dnn.DNN_TARGET_CUDA], |
|
[cv.dnn.DNN_BACKEND_CUDA, cv.dnn.DNN_TARGET_CUDA_FP16], |
|
[cv.dnn.DNN_BACKEND_TIMVX, cv.dnn.DNN_TARGET_NPU], |
|
[cv.dnn.DNN_BACKEND_CANN, cv.dnn.DNN_TARGET_NPU] |
|
] |
|
|
|
parser = argparse.ArgumentParser(description='Hand Pose Estimation from MediaPipe') |
|
parser.add_argument('--input', '-i', type=str, |
|
help='Path to the input image. Omit for using default camera.') |
|
parser.add_argument('--model', '-m', type=str, default='./handpose_estimation_mediapipe_2023feb.onnx', |
|
help='Path to the model.') |
|
parser.add_argument('--backend_target', '-bt', type=int, default=0, |
|
help='''Choose one of the backend-target pair to run this demo: |
|
{:d}: (default) OpenCV implementation + CPU, |
|
{:d}: CUDA + GPU (CUDA), |
|
{:d}: CUDA + GPU (CUDA FP16), |
|
{:d}: TIM-VX + NPU, |
|
{:d}: CANN + NPU |
|
'''.format(*[x for x in range(len(backend_target_pairs))])) |
|
parser.add_argument('--conf_threshold', type=float, default=0.9, |
|
help='Filter out hands of confidence < conf_threshold.') |
|
parser.add_argument('--save', '-s', action='store_true', |
|
help='Specify to save results. This flag is invalid when using camera.') |
|
parser.add_argument('--vis', '-v', action='store_true', |
|
help='Specify to open a window for result visualization. This flag is invalid when using camera.') |
|
args = parser.parse_args() |
|
|
|
|
|
def visualize(image, hands, print_result=False): |
|
display_screen = image.copy() |
|
display_3d = np.zeros((400, 400, 3), np.uint8) |
|
cv.line(display_3d, (200, 0), (200, 400), (255, 255, 255), 2) |
|
cv.line(display_3d, (0, 200), (400, 200), (255, 255, 255), 2) |
|
cv.putText(display_3d, 'Main View', (0, 12), cv.FONT_HERSHEY_DUPLEX, 0.5, (0, 0, 255)) |
|
cv.putText(display_3d, 'Top View', (200, 12), cv.FONT_HERSHEY_DUPLEX, 0.5, (0, 0, 255)) |
|
cv.putText(display_3d, 'Left View', (0, 212), cv.FONT_HERSHEY_DUPLEX, 0.5, (0, 0, 255)) |
|
cv.putText(display_3d, 'Right View', (200, 212), cv.FONT_HERSHEY_DUPLEX, 0.5, (0, 0, 255)) |
|
is_draw = False |
|
|
|
def draw_lines(image, landmarks, is_draw_point=True, thickness=2): |
|
cv.line(image, landmarks[0], landmarks[1], (255, 255, 255), thickness) |
|
cv.line(image, landmarks[1], landmarks[2], (255, 255, 255), thickness) |
|
cv.line(image, landmarks[2], landmarks[3], (255, 255, 255), thickness) |
|
cv.line(image, landmarks[3], landmarks[4], (255, 255, 255), thickness) |
|
|
|
cv.line(image, landmarks[0], landmarks[5], (255, 255, 255), thickness) |
|
cv.line(image, landmarks[5], landmarks[6], (255, 255, 255), thickness) |
|
cv.line(image, landmarks[6], landmarks[7], (255, 255, 255), thickness) |
|
cv.line(image, landmarks[7], landmarks[8], (255, 255, 255), thickness) |
|
|
|
cv.line(image, landmarks[0], landmarks[9], (255, 255, 255), thickness) |
|
cv.line(image, landmarks[9], landmarks[10], (255, 255, 255), thickness) |
|
cv.line(image, landmarks[10], landmarks[11], (255, 255, 255), thickness) |
|
cv.line(image, landmarks[11], landmarks[12], (255, 255, 255), thickness) |
|
|
|
cv.line(image, landmarks[0], landmarks[13], (255, 255, 255), thickness) |
|
cv.line(image, landmarks[13], landmarks[14], (255, 255, 255), thickness) |
|
cv.line(image, landmarks[14], landmarks[15], (255, 255, 255), thickness) |
|
cv.line(image, landmarks[15], landmarks[16], (255, 255, 255), thickness) |
|
|
|
cv.line(image, landmarks[0], landmarks[17], (255, 255, 255), thickness) |
|
cv.line(image, landmarks[17], landmarks[18], (255, 255, 255), thickness) |
|
cv.line(image, landmarks[18], landmarks[19], (255, 255, 255), thickness) |
|
cv.line(image, landmarks[19], landmarks[20], (255, 255, 255), thickness) |
|
|
|
if is_draw_point: |
|
for p in landmarks: |
|
cv.circle(image, p, thickness, (0, 0, 255), -1) |
|
|
|
|
|
gc = GestureClassification() |
|
|
|
for idx, handpose in enumerate(hands): |
|
conf = handpose[-1] |
|
bbox = handpose[0:4].astype(np.int32) |
|
handedness = handpose[-2] |
|
if handedness <= 0.5: |
|
handedness_text = 'Left' |
|
else: |
|
handedness_text = 'Right' |
|
landmarks_screen = handpose[4:67].reshape(21, 3).astype(np.int32) |
|
landmarks_word = handpose[67:130].reshape(21, 3) |
|
|
|
gesture = gc.classify(landmarks_screen) |
|
|
|
|
|
if print_result: |
|
print('-----------hand {}-----------'.format(idx + 1)) |
|
print('conf: {:.2f}'.format(conf)) |
|
print('handedness: {}'.format(handedness_text)) |
|
print('gesture: {}'.format(gesture)) |
|
print('hand box: {}'.format(bbox)) |
|
print('hand landmarks: ') |
|
for l in landmarks_screen: |
|
print('\t{}'.format(l)) |
|
print('hand world landmarks: ') |
|
for l in landmarks_word: |
|
print('\t{}'.format(l)) |
|
|
|
|
|
cv.rectangle(display_screen, (bbox[0], bbox[1]), (bbox[2], bbox[3]), (0, 255, 0), 2) |
|
|
|
cv.putText(display_screen, '{}'.format(handedness_text), (bbox[0], bbox[1] + 12), cv.FONT_HERSHEY_DUPLEX, 0.5, (0, 0, 255)) |
|
|
|
cv.putText(display_screen, '{}'.format(gesture), (bbox[0], bbox[1] + 30), cv.FONT_HERSHEY_DUPLEX, 0.5, (0, 0, 255)) |
|
|
|
landmarks_xy = landmarks_screen[:, 0:2] |
|
draw_lines(display_screen, landmarks_xy, is_draw_point=False) |
|
|
|
|
|
for p in landmarks_screen: |
|
r = max(5 - p[2] // 5, 0) |
|
r = min(r, 14) |
|
cv.circle(display_screen, np.array([p[0], p[1]]), r, (0, 0, 255), -1) |
|
|
|
if is_draw is False: |
|
is_draw = True |
|
|
|
landmarks_xy = landmarks_word[:, [0, 1]] |
|
landmarks_xy = (landmarks_xy * 1000 + 100).astype(np.int32) |
|
draw_lines(display_3d, landmarks_xy, thickness=5) |
|
|
|
|
|
landmarks_xz = landmarks_word[:, [0, 2]] |
|
landmarks_xz[:, 1] = -landmarks_xz[:, 1] |
|
landmarks_xz = (landmarks_xz * 1000 + np.array([300, 100])).astype(np.int32) |
|
draw_lines(display_3d, landmarks_xz, thickness=5) |
|
|
|
|
|
landmarks_yz = landmarks_word[:, [2, 1]] |
|
landmarks_yz[:, 0] = -landmarks_yz[:, 0] |
|
landmarks_yz = (landmarks_yz * 1000 + np.array([100, 300])).astype(np.int32) |
|
draw_lines(display_3d, landmarks_yz, thickness=5) |
|
|
|
|
|
landmarks_zy = landmarks_word[:, [2, 1]] |
|
landmarks_zy = (landmarks_zy * 1000 + np.array([300, 300])).astype(np.int32) |
|
draw_lines(display_3d, landmarks_zy, thickness=5) |
|
|
|
return display_screen, display_3d |
|
|
|
class GestureClassification: |
|
def _vector_2_angle(self, v1, v2): |
|
uv1 = v1 / np.linalg.norm(v1) |
|
uv2 = v2 / np.linalg.norm(v2) |
|
angle = np.degrees(np.arccos(np.dot(uv1, uv2))) |
|
return angle |
|
|
|
def _hand_angle(self, hand): |
|
angle_list = [] |
|
|
|
angle_ = self._vector_2_angle( |
|
np.array([hand[0][0] - hand[2][0], hand[0][1] - hand[2][1]]), |
|
np.array([hand[3][0] - hand[4][0], hand[3][1] - hand[4][1]]) |
|
) |
|
angle_list.append(angle_) |
|
|
|
angle_ = self._vector_2_angle( |
|
np.array([hand[0][0] - hand[6][0], hand[0][1] - hand[6][1]]), |
|
np.array([hand[7][0] - hand[8][0], hand[7][1] - hand[8][1]]) |
|
) |
|
angle_list.append(angle_) |
|
|
|
angle_ = self._vector_2_angle( |
|
np.array([hand[0][0] - hand[10][0], hand[0][1] - hand[10][1]]), |
|
np.array([hand[11][0] - hand[12][0], hand[11][1] - hand[12][1]]) |
|
) |
|
angle_list.append(angle_) |
|
|
|
angle_ = self._vector_2_angle( |
|
np.array([hand[0][0] - hand[14][0], hand[0][1] - hand[14][1]]), |
|
np.array([hand[15][0] - hand[16][0], hand[15][1] - hand[16][1]]) |
|
) |
|
angle_list.append(angle_) |
|
|
|
angle_ = self._vector_2_angle( |
|
np.array([hand[0][0] - hand[18][0], hand[0][1] - hand[18][1]]), |
|
np.array([hand[19][0] - hand[20][0], hand[19][1] - hand[20][1]]) |
|
) |
|
angle_list.append(angle_) |
|
return angle_list |
|
|
|
def _finger_status(self, lmList): |
|
fingerList = [] |
|
originx, originy = lmList[0] |
|
keypoint_list = [[5, 4], [6, 8], [10, 12], [14, 16], [18, 20]] |
|
for point in keypoint_list: |
|
x1, y1 = lmList[point[0]] |
|
x2, y2 = lmList[point[1]] |
|
if np.hypot(x2 - originx, y2 - originy) > np.hypot(x1 - originx, y1 - originy): |
|
fingerList.append(True) |
|
else: |
|
fingerList.append(False) |
|
|
|
return fingerList |
|
|
|
def _classify(self, hand): |
|
thr_angle = 65. |
|
thr_angle_thumb = 30. |
|
thr_angle_s = 49. |
|
gesture_str = "Undefined" |
|
|
|
angle_list = self._hand_angle(hand) |
|
|
|
thumbOpen, firstOpen, secondOpen, thirdOpen, fourthOpen = self._finger_status(hand) |
|
|
|
if (angle_list[0] > thr_angle_thumb) and (angle_list[1] > thr_angle) and (angle_list[2] > thr_angle) and ( |
|
angle_list[3] > thr_angle) and (angle_list[4] > thr_angle) and \ |
|
not firstOpen and not secondOpen and not thirdOpen and not fourthOpen: |
|
gesture_str = "Zero" |
|
elif (angle_list[0] > thr_angle_thumb) and (angle_list[1] < thr_angle_s) and (angle_list[2] > thr_angle) and ( |
|
angle_list[3] > thr_angle) and (angle_list[4] > thr_angle) and \ |
|
firstOpen and not secondOpen and not thirdOpen and not fourthOpen: |
|
gesture_str = "One" |
|
elif (angle_list[0] > thr_angle_thumb) and (angle_list[1] < thr_angle_s) and (angle_list[2] < thr_angle_s) and ( |
|
angle_list[3] > thr_angle) and (angle_list[4] > thr_angle) and \ |
|
not thumbOpen and firstOpen and secondOpen and not thirdOpen and not fourthOpen: |
|
gesture_str = "Two" |
|
elif (angle_list[0] > thr_angle_thumb) and (angle_list[1] < thr_angle_s) and (angle_list[2] < thr_angle_s) and ( |
|
angle_list[3] < thr_angle_s) and (angle_list[4] > thr_angle) and \ |
|
not thumbOpen and firstOpen and secondOpen and thirdOpen and not fourthOpen: |
|
gesture_str = "Three" |
|
elif (angle_list[0] > thr_angle_thumb) and (angle_list[1] < thr_angle_s) and (angle_list[2] < thr_angle_s) and ( |
|
angle_list[3] < thr_angle_s) and (angle_list[4] < thr_angle) and \ |
|
firstOpen and secondOpen and thirdOpen and fourthOpen: |
|
gesture_str = "Four" |
|
elif (angle_list[0] < thr_angle_s) and (angle_list[1] < thr_angle_s) and (angle_list[2] < thr_angle_s) and ( |
|
angle_list[3] < thr_angle_s) and (angle_list[4] < thr_angle_s) and \ |
|
thumbOpen and firstOpen and secondOpen and thirdOpen and fourthOpen: |
|
gesture_str = "Five" |
|
elif (angle_list[0] < thr_angle_s) and (angle_list[1] > thr_angle) and (angle_list[2] > thr_angle) and ( |
|
angle_list[3] > thr_angle) and (angle_list[4] < thr_angle_s) and \ |
|
thumbOpen and not firstOpen and not secondOpen and not thirdOpen and fourthOpen: |
|
gesture_str = "Six" |
|
elif (angle_list[0] < thr_angle_s) and (angle_list[1] < thr_angle) and (angle_list[2] > thr_angle) and ( |
|
angle_list[3] > thr_angle) and (angle_list[4] > thr_angle_s) and \ |
|
thumbOpen and firstOpen and not secondOpen and not thirdOpen and not fourthOpen: |
|
gesture_str = "Seven" |
|
elif (angle_list[0] < thr_angle_s) and (angle_list[1] < thr_angle) and (angle_list[2] < thr_angle) and ( |
|
angle_list[3] > thr_angle) and (angle_list[4] > thr_angle_s) and \ |
|
thumbOpen and firstOpen and secondOpen and not thirdOpen and not fourthOpen: |
|
gesture_str = "Eight" |
|
elif (angle_list[0] < thr_angle_s) and (angle_list[1] < thr_angle) and (angle_list[2] < thr_angle) and ( |
|
angle_list[3] < thr_angle) and (angle_list[4] > thr_angle_s) and \ |
|
thumbOpen and firstOpen and secondOpen and thirdOpen and not fourthOpen: |
|
gesture_str = "Nine" |
|
|
|
return gesture_str |
|
|
|
def classify(self, landmarks): |
|
hand = landmarks[:21, :2] |
|
gesture = self._classify(hand) |
|
return gesture |
|
|
|
if __name__ == '__main__': |
|
backend_id = backend_target_pairs[args.backend_target][0] |
|
target_id = backend_target_pairs[args.backend_target][1] |
|
|
|
palm_detector = MPPalmDet(modelPath='../palm_detection_mediapipe/palm_detection_mediapipe_2023feb.onnx', |
|
nmsThreshold=0.3, |
|
scoreThreshold=0.6, |
|
backendId=backend_id, |
|
targetId=target_id) |
|
|
|
handpose_detector = MPHandPose(modelPath=args.model, |
|
confThreshold=args.conf_threshold, |
|
backendId=backend_id, |
|
targetId=target_id) |
|
|
|
|
|
if args.input is not None: |
|
image = cv.imread(args.input) |
|
|
|
|
|
palms = palm_detector.infer(image) |
|
hands = np.empty(shape=(0, 132)) |
|
|
|
|
|
for palm in palms: |
|
|
|
handpose = handpose_detector.infer(image, palm) |
|
if handpose is not None: |
|
hands = np.vstack((hands, handpose)) |
|
|
|
image, view_3d = visualize(image, hands, True) |
|
|
|
if len(palms) == 0: |
|
print('No palm detected!') |
|
else: |
|
print('Palm detected!') |
|
|
|
|
|
if args.save: |
|
cv.imwrite('result.jpg', image) |
|
print('Results saved to result.jpg\n') |
|
|
|
|
|
if args.vis: |
|
cv.namedWindow(args.input, cv.WINDOW_AUTOSIZE) |
|
cv.imshow(args.input, image) |
|
cv.imshow('3D HandPose Demo', view_3d) |
|
cv.waitKey(0) |
|
else: |
|
deviceId = 0 |
|
cap = cv.VideoCapture(deviceId) |
|
|
|
tm = cv.TickMeter() |
|
while cv.waitKey(1) < 0: |
|
hasFrame, frame = cap.read() |
|
if not hasFrame: |
|
print('No frames grabbed!') |
|
break |
|
|
|
|
|
palms = palm_detector.infer(frame) |
|
hands = np.empty(shape=(0, 132)) |
|
|
|
tm.start() |
|
|
|
for palm in palms: |
|
|
|
handpose = handpose_detector.infer(frame, palm) |
|
if handpose is not None: |
|
hands = np.vstack((hands, handpose)) |
|
tm.stop() |
|
|
|
frame, view_3d = visualize(frame, hands) |
|
|
|
if len(palms) == 0: |
|
print('No palm detected!') |
|
else: |
|
print('Palm detected!') |
|
cv.putText(frame, 'FPS: {:.2f}'.format(tm.getFPS()), (0, 15), cv.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255)) |
|
|
|
cv.imshow('MediaPipe Handpose Detection Demo', frame) |
|
cv.imshow('3D HandPose Demo', view_3d) |
|
tm.reset() |
|
|