|
|
|
|
|
|
|
|
|
|
|
|
|
import numpy as np |
|
import cv2 as cv |
|
|
|
class PPHumanSeg: |
|
def __init__(self, modelPath, backendId=0, targetId=0): |
|
self._modelPath = modelPath |
|
self._backendId = backendId |
|
self._targetId = targetId |
|
|
|
self._model = cv.dnn.readNet(self._modelPath) |
|
self._model.setPreferableBackend(self._backendId) |
|
self._model.setPreferableTarget(self._targetId) |
|
|
|
self._inputNames = '' |
|
self._outputNames = ['save_infer_model/scale_0.tmp_1'] |
|
self._currentInputSize = None |
|
self._inputSize = [192, 192] |
|
self._mean = np.array([0.5, 0.5, 0.5])[np.newaxis, np.newaxis, :] |
|
self._std = np.array([0.5, 0.5, 0.5])[np.newaxis, np.newaxis, :] |
|
|
|
@property |
|
def name(self): |
|
return self.__class__.__name__ |
|
|
|
def setBackendAndTarget(self, backendId, targetId): |
|
self._backendId = backendId |
|
self._targetId = targetId |
|
self._model.setPreferableBackend(self._backendId) |
|
self._model.setPreferableTarget(self._targetId) |
|
|
|
def _preprocess(self, image): |
|
|
|
image = cv.cvtColor(image, cv.COLOR_BGR2RGB) |
|
|
|
self._currentInputSize = image.shape |
|
image = cv.resize(image, (192, 192)) |
|
|
|
image = image.astype(np.float32, copy=False) / 255.0 |
|
image -= self._mean |
|
image /= self._std |
|
return cv.dnn.blobFromImage(image) |
|
|
|
def infer(self, image): |
|
|
|
|
|
inputBlob = self._preprocess(image) |
|
|
|
|
|
self._model.setInput(inputBlob, self._inputNames) |
|
outputBlob = self._model.forward() |
|
|
|
|
|
results = self._postprocess(outputBlob) |
|
|
|
return results |
|
|
|
def _postprocess(self, outputBlob): |
|
|
|
outputBlob = outputBlob[0] |
|
outputBlob = cv.resize(outputBlob.transpose(1,2,0), (self._currentInputSize[1], self._currentInputSize[0]), interpolation=cv.INTER_LINEAR).transpose(2,0,1)[np.newaxis, ...] |
|
|
|
result = np.argmax(outputBlob, axis=1).astype(np.uint8) |
|
return result |
|
|