|
# ResNet |
|
|
|
Deep Residual Learning for Image Recognition |
|
|
|
This model is ported from [PaddleHub](https://github.com/PaddlePaddle/PaddleHub) using [this script from OpenCV](https://github.com/opencv/opencv/blob/master/samples/dnn/dnn_model_runner/dnn_conversion/paddlepaddle/paddle_resnet50.py). |
|
|
|
**Note**: |
|
- `image_classification_ppresnet50_2022jan_int8bq.onnx` represents the block-quantized version in int8 precision and is generated using [block_quantize.py](../../tools/quantize/block_quantize.py) with `block_size=64`. |
|
|
|
Results of accuracy evaluation with [tools/eval](../../tools/eval). |
|
|
|
| Models | Top-1 Accuracy | Top-5 Accuracy | |
|
| --------------- | -------------- | -------------- | |
|
| PP-ResNet | 82.28 | 96.15 | |
|
| PP-ResNet block | 82.27 | 96.15 | |
|
| PP-ResNet quant | 0.22 | 0.96 | |
|
|
|
\*: 'quant' stands for 'quantized'. |
|
\*\*: 'block' stands for 'blockwise quantized'. |
|
|
|
## Demo |
|
|
|
Run the following commands to try the demo: |
|
|
|
### Python |
|
|
|
```shell |
|
python demo.py --input /path/to/image |
|
|
|
# get help regarding various parameters |
|
python demo.py --help |
|
``` |
|
### C++ |
|
|
|
Install latest OpenCV and CMake >= 3.24.0 to get started with: |
|
|
|
```shell |
|
# A typical and default installation path of OpenCV is /usr/local |
|
cmake -B build -D OPENCV_INSTALLATION_PATH=/path/to/opencv/installation . |
|
cmake --build build |
|
|
|
# detect on an image |
|
./build/opencv_zoo_image_classification_ppresnet -i=/path/to/image |
|
|
|
# detect on an image and display top N classes |
|
./build/opencv_zoo_image_classification_ppresnet -i=/path/to/image -k=N |
|
|
|
# get help messages |
|
./build/opencv_zoo_image_classification_ppresnet -h |
|
``` |
|
|
|
## License |
|
|
|
All files in this directory are licensed under [Apache 2.0 License](./LICENSE). |
|
|
|
## Reference |
|
|
|
- https://arxiv.org/abs/1512.03385 |
|
- https://github.com/opencv/opencv/tree/master/samples/dnn/dnn_model_runner/dnn_conversion/paddlepaddle |
|
- https://github.com/PaddlePaddle/PaddleHub |
|
|