DaniAffCH's picture
[GSoC] Add block quantized models (#270)
85a27e0
# ResNet
Deep Residual Learning for Image Recognition
This model is ported from [PaddleHub](https://github.com/PaddlePaddle/PaddleHub) using [this script from OpenCV](https://github.com/opencv/opencv/blob/master/samples/dnn/dnn_model_runner/dnn_conversion/paddlepaddle/paddle_resnet50.py).
**Note**:
- `image_classification_ppresnet50_2022jan_int8bq.onnx` represents the block-quantized version in int8 precision and is generated using [block_quantize.py](../../tools/quantize/block_quantize.py) with `block_size=64`.
Results of accuracy evaluation with [tools/eval](../../tools/eval).
| Models | Top-1 Accuracy | Top-5 Accuracy |
| --------------- | -------------- | -------------- |
| PP-ResNet | 82.28 | 96.15 |
| PP-ResNet block | 82.27 | 96.15 |
| PP-ResNet quant | 0.22 | 0.96 |
\*: 'quant' stands for 'quantized'.
\*\*: 'block' stands for 'blockwise quantized'.
## Demo
Run the following commands to try the demo:
### Python
```shell
python demo.py --input /path/to/image
# get help regarding various parameters
python demo.py --help
```
### C++
Install latest OpenCV and CMake >= 3.24.0 to get started with:
```shell
# A typical and default installation path of OpenCV is /usr/local
cmake -B build -D OPENCV_INSTALLATION_PATH=/path/to/opencv/installation .
cmake --build build
# detect on an image
./build/opencv_zoo_image_classification_ppresnet -i=/path/to/image
# detect on an image and display top N classes
./build/opencv_zoo_image_classification_ppresnet -i=/path/to/image -k=N
# get help messages
./build/opencv_zoo_image_classification_ppresnet -h
```
## License
All files in this directory are licensed under [Apache 2.0 License](./LICENSE).
## Reference
- https://arxiv.org/abs/1512.03385
- https://github.com/opencv/opencv/tree/master/samples/dnn/dnn_model_runner/dnn_conversion/paddlepaddle
- https://github.com/PaddlePaddle/PaddleHub