ytfeng's picture
bump opencv version to 4.10.0 (#260)
167c85e
import argparse
import cv2 as cv
import numpy as np
# Check OpenCV version
opencv_python_version = lambda str_version: tuple(map(int, (str_version.split("."))))
assert opencv_python_version(cv.__version__) >= opencv_python_version("4.10.0"), \
"Please install latest opencv-python for benchmark: python3 -m pip install --upgrade opencv-python"
from raft import Raft
parser = argparse.ArgumentParser(description='RAFT (https://github.com/princeton-vl/RAFT)')
parser.add_argument('--input1', '-i1', type=str,
help='Usage: Set input1 path to first image, omit if using camera or video.')
parser.add_argument('--input2', '-i2', type=str,
help='Usage: Set input2 path to second image, omit if using camera or video.')
parser.add_argument('--video', '-vid', type=str,
help='Usage: Set video path to desired input video, omit if using camera or two image inputs.')
parser.add_argument('--model', '-m', type=str, default='optical_flow_estimation_raft_2023aug.onnx',
help='Usage: Set model path, defaults to optical_flow_estimation_raft_2023aug.onnx.')
parser.add_argument('--save', '-s', action='store_true',
help='Usage: Specify to save a file with results. Invalid in case of camera input.')
parser.add_argument('--visual', '-vis', action='store_true',
help='Usage: Specify to open a new window to show results. Invalid in case of camera input.')
args = parser.parse_args()
UNKNOWN_FLOW_THRESH = 1e7
def make_color_wheel():
""" Generate color wheel according Middlebury color code.
Returns:
Color wheel(numpy.ndarray): Color wheel
"""
RY = 15
YG = 6
GC = 4
CB = 11
BM = 13
MR = 6
ncols = RY + YG + GC + CB + BM + MR
colorwheel = np.zeros([ncols, 3])
col = 0
# RY
colorwheel[0:RY, 0] = 255
colorwheel[0:RY, 1] = np.transpose(np.floor(255*np.arange(0, RY) / RY))
col += RY
# YG
colorwheel[col:col+YG, 0] = 255 - np.transpose(np.floor(255*np.arange(0, YG) / YG))
colorwheel[col:col+YG, 1] = 255
col += YG
# GC
colorwheel[col:col+GC, 1] = 255
colorwheel[col:col+GC, 2] = np.transpose(np.floor(255*np.arange(0, GC) / GC))
col += GC
# CB
colorwheel[col:col+CB, 1] = 255 - np.transpose(np.floor(255*np.arange(0, CB) / CB))
colorwheel[col:col+CB, 2] = 255
col += CB
# BM
colorwheel[col:col+BM, 2] = 255
colorwheel[col:col+BM, 0] = np.transpose(np.floor(255*np.arange(0, BM) / BM))
col += + BM
# MR
colorwheel[col:col+MR, 2] = 255 - np.transpose(np.floor(255 * np.arange(0, MR) / MR))
colorwheel[col:col+MR, 0] = 255
return colorwheel
colorwheel = make_color_wheel()
def compute_color(u, v):
""" Compute optical flow color map
Args:
u(numpy.ndarray): Optical flow horizontal map
v(numpy.ndarray): Optical flow vertical map
Returns:
img (numpy.ndarray): Optical flow in color code
"""
[h, w] = u.shape
img = np.zeros([h, w, 3])
nanIdx = np.isnan(u) | np.isnan(v)
u[nanIdx] = 0
v[nanIdx] = 0
ncols = np.size(colorwheel, 0)
rad = np.sqrt(u**2+v**2)
a = np.arctan2(-v, -u) / np.pi
fk = (a+1) / 2 * (ncols - 1) + 1
k0 = np.floor(fk).astype(int)
k1 = k0 + 1
k1[k1 == ncols+1] = 1
f = fk - k0
for i in range(0, np.size(colorwheel,1)):
tmp = colorwheel[:, i]
col0 = tmp[k0-1] / 255
col1 = tmp[k1-1] / 255
col = (1-f) * col0 + f * col1
idx = rad <= 1
col[idx] = 1-rad[idx]*(1-col[idx])
notidx = np.logical_not(idx)
col[notidx] *= 0.75
img[:, :, i] = np.uint8(np.floor(255 * col*(1-nanIdx)))
return img
def flow_to_image(flow):
"""Convert flow into middlebury color code image
Args:
flow (np.ndarray): The computed flow map
Returns:
(np.ndarray): Image corresponding to the flow map.
"""
u = flow[:, :, 0]
v = flow[:, :, 1]
maxu = -999.
maxv = -999.
minu = 999.
minv = 999.
idxUnknow = (abs(u) > UNKNOWN_FLOW_THRESH) | (abs(v) > UNKNOWN_FLOW_THRESH)
u[idxUnknow] = 0
v[idxUnknow] = 0
maxu = max(maxu, np.max(u))
minu = min(minu, np.min(u))
maxv = max(maxv, np.max(v))
minv = min(minv, np.min(v))
rad = np.sqrt(u ** 2 + v ** 2)
maxrad = max(-1, np.max(rad))
u = u/(maxrad + np.finfo(float).eps)
v = v/(maxrad + np.finfo(float).eps)
img = compute_color(u, v)
idx = np.repeat(idxUnknow[:, :, np.newaxis], 3, axis=2)
img[idx] = 0
return np.uint8(img)
def draw_flow(flow_map, img_width, img_height):
"""Convert flow map to image
Args:
flow_map (np.ndarray): The computed flow map
img_width (int): The width of the first input photo
img_height (int): The height of the first input photo
Returns:
(np.ndarray): Image corresponding to the flow map.
"""
# Convert flow to image
flow_img = flow_to_image(flow_map)
# Convert to BGR
flow_img = cv.cvtColor(flow_img, cv.COLOR_RGB2BGR)
# Resize the depth map to match the input image shape
return cv.resize(flow_img, (img_width, img_height))
def visualize(image1, image2, flow_img):
"""
Combine two input images with resulting flow img and display them together
Args:
image1 (np.ndarray): The first input image.
imag2 (np.ndarray): The second input image.
flow_img (np.ndarray): The output flow map drawn as an image
Returns:
combined_img (np.ndarray): The visualized result.
"""
combined_img = np.hstack((image1, image2, flow_img))
cv.namedWindow("Estimated flow", cv.WINDOW_NORMAL)
cv.imshow("Estimated flow", combined_img)
cv.waitKey(0)
return combined_img
if __name__ == '__main__':
# Instantiate RAFT
model = Raft(modelPath=args.model)
if args.input1 is not None and args.input2 is not None:
# Read image
image1 = cv.imread(args.input1)
image2 = cv.imread(args.input2)
img_height, img_width, img_channels = image1.shape
# Inference
result = model.infer(image1, image2)
# Create flow image based on the result flow map
flow_image = draw_flow(result, img_width, img_height)
# Save results if save is true
if args.save:
print('Results saved to result.jpg\n')
cv.imwrite('result.jpg', flow_image)
# Visualize results in a new window
if args.visual:
input_output_visualization = visualize(image1, image2, flow_image)
elif args.video is not None:
cap = cv.VideoCapture(args.video)
FLOW_FRAME_OFFSET = 3 # Number of frame difference to estimate the optical flow
if args.visual:
cv.namedWindow("Estimated flow", cv.WINDOW_NORMAL)
frame_list = []
img_array = []
frame_num = 0
while cap.isOpened():
try:
# Read frame from the video
ret, prev_frame = cap.read()
frame_list.append(prev_frame)
if not ret:
break
except:
continue
frame_num += 1
if frame_num <= FLOW_FRAME_OFFSET:
continue
else:
frame_num = 0
result = model.infer(frame_list[0], frame_list[-1])
img_height, img_width, img_channels = frame_list[0].shape
flow_img = draw_flow(result, img_width, img_height)
alpha = 0.6
combined_img = cv.addWeighted(frame_list[0], alpha, flow_img, (1-alpha),0)
if args.visual:
cv.imshow("Estimated flow", combined_img)
img_array.append(combined_img)
# Remove the oldest frame
frame_list.pop(0)
# Press key q to stop
if cv.waitKey(1) == ord('q'):
break
cap.release()
if args.save:
fourcc = cv.VideoWriter_fourcc(*'mp4v')
height,width,layers= img_array[0].shape
video = cv.VideoWriter('result.mp4', fourcc, 30.0, (width, height), isColor=True)
for img in img_array:
video.write(img)
video.release()
cv.destroyAllWindows()
else: # Omit input to call default camera
deviceId = 0
cap = cv.VideoCapture(deviceId)
w = int(cap.get(cv.CAP_PROP_FRAME_WIDTH))
h = int(cap.get(cv.CAP_PROP_FRAME_HEIGHT))
tm = cv.TickMeter()
while cv.waitKey(30) < 0:
hasFrame1, frame1 = cap.read()
hasFrame2, frame2 = cap.read()
if not hasFrame1:
print('First frame was not grabbed!')
break
if not hasFrame2:
print('Second frame was not grabbed!')
break
# Inference
tm.start()
result = model.infer(frame1, frame2)
tm.stop()
result = draw_flow(result, w, h)
# Draw results on the input image
frame = visualize(frame1, frame2, result)
tm.reset()