|
#include <opencv2/opencv.hpp>
|
|
#include "opencv2/dnn.hpp"
|
|
#include <iostream>
|
|
#include <vector>
|
|
#include <map>
|
|
#include <string>
|
|
#include <numeric>
|
|
|
|
|
|
|
|
class YoutuReID {
|
|
public:
|
|
YoutuReID(const std::string& model_path,
|
|
const cv::Size& input_size = cv::Size(128, 256),
|
|
int output_dim = 768,
|
|
const cv::Scalar& mean = cv::Scalar(0.485, 0.456, 0.406),
|
|
const cv::Scalar& std = cv::Scalar(0.229, 0.224, 0.225),
|
|
int backend_id = 0,
|
|
int target_id = 0)
|
|
: model_path_(model_path), input_size_(input_size),
|
|
output_dim_(output_dim), mean_(mean), std_(std),
|
|
backend_id_(backend_id), target_id_(target_id)
|
|
{
|
|
|
|
model_ = cv::dnn::readNet(model_path_);
|
|
model_.setPreferableBackend(backend_id_);
|
|
model_.setPreferableTarget(target_id_);
|
|
}
|
|
|
|
void setBackendAndTarget(int backend_id, int target_id) {
|
|
backend_id_ = backend_id;
|
|
target_id_ = target_id;
|
|
model_.setPreferableBackend(backend_id_);
|
|
model_.setPreferableTarget(target_id_);
|
|
}
|
|
|
|
void setInputSize(const cv::Size& input_size) {
|
|
input_size_ = input_size;
|
|
}
|
|
|
|
|
|
cv::Mat preprocess(const cv::Mat& image) {
|
|
cv::Mat img;
|
|
cv::cvtColor(image, img, cv::COLOR_BGR2RGB);
|
|
img.convertTo(img, CV_32F, 1.0 / 255.0);
|
|
|
|
|
|
std::vector<cv::Mat> channels(3);
|
|
cv::split(img, channels);
|
|
channels[0] = (channels[0] - mean_[0]) / std_[0];
|
|
channels[1] = (channels[1] - mean_[1]) / std_[1];
|
|
channels[2] = (channels[2] - mean_[2]) / std_[2];
|
|
cv::merge(channels, img);
|
|
|
|
return cv::dnn::blobFromImage(img);
|
|
}
|
|
|
|
|
|
cv::Mat infer(const cv::Mat& image) {
|
|
cv::Mat input_blob = preprocess(image);
|
|
model_.setInput(input_blob);
|
|
cv::Mat features = model_.forward();
|
|
|
|
if (features.dims == 4 && features.size[2] == 1 && features.size[3] == 1) {
|
|
features = features.reshape(1, {1, features.size[1]});
|
|
}
|
|
|
|
return features;
|
|
}
|
|
|
|
|
|
std::vector<std::vector<int>> query(const std::vector<cv::Mat>& query_img_list,
|
|
const std::vector<cv::Mat>& gallery_img_list,
|
|
int topK = 5) {
|
|
std::vector<cv::Mat> query_features_list, gallery_features_list;
|
|
cv::Mat query_features, gallery_features;
|
|
|
|
for (size_t i = 0; i < query_img_list.size(); ++i) {
|
|
cv::Mat feature = infer(query_img_list[i]);
|
|
query_features_list.push_back(feature.clone());
|
|
}
|
|
cv::vconcat(query_features_list, query_features);
|
|
normalizeFeatures(query_features);
|
|
|
|
for (size_t i = 0; i < gallery_img_list.size(); ++i) {
|
|
cv::Mat feature = infer(gallery_img_list[i]);
|
|
gallery_features_list.push_back(feature.clone());
|
|
}
|
|
cv::vconcat(gallery_features_list, gallery_features);
|
|
normalizeFeatures(gallery_features);
|
|
|
|
cv::Mat dist = query_features * gallery_features.t();
|
|
return getTopK(dist, topK);
|
|
}
|
|
|
|
private:
|
|
|
|
void normalizeFeatures(cv::Mat& features) {
|
|
const float epsilon = 1e-6;
|
|
for (int i = 0; i < features.rows; ++i) {
|
|
cv::Mat featureRow = features.row(i);
|
|
float norm = cv::norm(featureRow, cv::NORM_L2);
|
|
if (norm < epsilon) {
|
|
norm = epsilon;
|
|
}
|
|
featureRow /= norm;
|
|
}
|
|
}
|
|
|
|
|
|
std::vector<std::vector<int>> getTopK(const cv::Mat& dist, int topK) {
|
|
std::vector<std::vector<int>> indices(dist.rows);
|
|
|
|
for (int i = 0; i < dist.rows; ++i) {
|
|
std::vector<std::pair<float, int>> sim_index_pairs;
|
|
for (int j = 0; j < dist.cols; ++j) {
|
|
sim_index_pairs.emplace_back(dist.at<float>(i, j), j);
|
|
}
|
|
std::sort(sim_index_pairs.begin(), sim_index_pairs.end(),
|
|
[](const std::pair<float, int>& a, const std::pair<float, int>& b) {
|
|
return a.first > b.first;
|
|
});
|
|
|
|
for (int k = 0; k < topK && k < sim_index_pairs.size(); ++k) {
|
|
indices[i].push_back(sim_index_pairs[k].second);
|
|
}
|
|
}
|
|
return indices;
|
|
}
|
|
|
|
std::string model_path_;
|
|
cv::Size input_size_;
|
|
int output_dim_;
|
|
cv::Scalar mean_, std_;
|
|
int backend_id_;
|
|
int target_id_;
|
|
cv::dnn::Net model_;
|
|
};
|
|
|
|
|
|
std::pair<std::vector<cv::Mat>, std::vector<std::string>> readImagesFromDirectory(const std::string& img_dir, int w = 128, int h = 256) {
|
|
std::vector<cv::Mat> img_list;
|
|
std::vector<std::string> file_list;
|
|
|
|
std::vector<std::string> file_names;
|
|
cv::glob(img_dir + "/*", file_names, false);
|
|
|
|
for (size_t i = 0; i < file_names.size(); ++i) {
|
|
std::string file_name = file_names[i].substr(file_names[i].find_last_of("/\\") + 1);
|
|
cv::Mat img = cv::imread(file_names[i]);
|
|
if (!img.empty()) {
|
|
cv::resize(img, img, cv::Size(w, h));
|
|
img_list.push_back(img);
|
|
file_list.push_back(file_name);
|
|
}
|
|
}
|
|
return std::make_pair(img_list, file_list);
|
|
}
|
|
|
|
|
|
std::map<std::string, cv::Mat> visualize(
|
|
const std::map<std::string, std::vector<std::string>>& results,
|
|
const std::string& query_dir,
|
|
const std::string& gallery_dir,
|
|
const cv::Size& output_size = cv::Size(128, 384)) {
|
|
|
|
std::map<std::string, cv::Mat> results_vis;
|
|
|
|
for (std::map<std::string, std::vector<std::string>>::const_iterator it = results.begin(); it != results.end(); ++it) {
|
|
const std::string& query_file = it->first;
|
|
const std::vector<std::string>& top_matches = it->second;
|
|
|
|
cv::Mat query_img = cv::imread(query_dir + "/" + query_file);
|
|
if (query_img.empty()) continue;
|
|
|
|
cv::resize(query_img, query_img, output_size);
|
|
cv::copyMakeBorder(query_img, query_img, 5, 5, 5, 5,
|
|
cv::BORDER_CONSTANT, cv::Scalar(0, 0, 0));
|
|
cv::putText(query_img, "Query", cv::Point(10, 30),
|
|
cv::FONT_HERSHEY_COMPLEX, 1, cv::Scalar(0, 255, 0), 2);
|
|
|
|
cv::Mat concat_img = query_img;
|
|
|
|
for (size_t i = 0; i < top_matches.size(); ++i) {
|
|
cv::Mat gallery_img = cv::imread(gallery_dir + "/" + top_matches[i]);
|
|
if (gallery_img.empty()) continue;
|
|
|
|
cv::resize(gallery_img, gallery_img, output_size);
|
|
cv::copyMakeBorder(gallery_img, gallery_img, 5, 5, 5, 5,
|
|
cv::BORDER_CONSTANT, cv::Scalar(255, 255, 255));
|
|
cv::putText(gallery_img, "G" + std::to_string(i), cv::Point(10, 30),
|
|
cv::FONT_HERSHEY_COMPLEX, 1, cv::Scalar(0, 255, 0), 2);
|
|
|
|
cv::hconcat(concat_img, gallery_img, concat_img);
|
|
}
|
|
results_vis[query_file] = concat_img;
|
|
}
|
|
return results_vis;
|
|
}
|
|
|
|
void printHelpMessage() {
|
|
std::cout << "usage: demo.cpp [-h] [--query_dir QUERY_DIR] [--gallery_dir GALLERY_DIR] "
|
|
<< "[--backend_target BACKEND_TARGET] [--topk TOPK] [--model MODEL] [--save] [--vis]\n\n"
|
|
<< "ReID baseline models from Tencent Youtu Lab\n\n"
|
|
<< "optional arguments:\n"
|
|
<< " -h, --help show this help message and exit\n"
|
|
<< " --query_dir QUERY_DIR, -q QUERY_DIR\n"
|
|
<< " Query directory.\n"
|
|
<< " --gallery_dir GALLERY_DIR, -g GALLERY_DIR\n"
|
|
<< " Gallery directory.\n"
|
|
<< " --backend_target BACKEND_TARGET, -bt BACKEND_TARGET\n"
|
|
<< " Choose one of the backend-target pair to run this demo: 0: (default) OpenCV implementation + "
|
|
"CPU, 1: CUDA + GPU (CUDA), 2: CUDA + GPU (CUDA FP16), 3: TIM-VX + NPU, 4: CANN + NPU\n"
|
|
<< " --topk TOPK Top-K closest from gallery for each query.\n"
|
|
<< " --model MODEL, -m MODEL\n"
|
|
<< " Path to the model.\n"
|
|
<< " --save, -s Usage: Specify to save file with results (i.e. bounding box, confidence level). Invalid in "
|
|
"case of camera input.\n"
|
|
<< " --vis, -v Usage: Specify to open a new window to show results. Invalid in case of camera input.\n";
|
|
}
|
|
|
|
int main(int argc, char** argv) {
|
|
|
|
cv::CommandLineParser parser(argc, argv,
|
|
"{help h | | Show help message.}"
|
|
"{query_dir q | | Query directory.}"
|
|
"{gallery_dir g | | Gallery directory.}"
|
|
"{backend_target bt | 0 | Choose one of the backend-target pair to run this demo: 0: (default) OpenCV implementation + CPU, "
|
|
"1: CUDA + GPU (CUDA), 2: CUDA + GPU (CUDA FP16), 3: TIM-VX + NPU, 4: CANN + NPU}"
|
|
"{topk k | 10 | Top-K closest from gallery for each query.}"
|
|
"{model m | person_reid_youtu_2021nov.onnx | Path to the model.}"
|
|
"{save s | false | Usage: Specify to save file with results (i.e. bounding box, confidence level). Invalid in case of camera input.}"
|
|
"{vis v | false | Usage: Specify to open a new window to show results. Invalid in case of camera input.}");
|
|
|
|
if (parser.has("help")) {
|
|
printHelpMessage();
|
|
return 0;
|
|
}
|
|
|
|
std::string query_dir = parser.get<std::string>("query_dir");
|
|
std::string gallery_dir = parser.get<std::string>("gallery_dir");
|
|
int backend_target = parser.get<int>("backend_target");
|
|
int topK = parser.get<int>("topk");
|
|
std::string model_path = parser.get<std::string>("model");
|
|
bool save_flag = parser.get<bool>("save");
|
|
bool vis_flag = parser.get<bool>("vis");
|
|
|
|
if (!parser.check()) {
|
|
parser.printErrors();
|
|
return 1;
|
|
}
|
|
|
|
const std::vector<std::pair<int, int>> backend_target_pairs = {
|
|
{cv::dnn::DNN_BACKEND_OPENCV, cv::dnn::DNN_TARGET_CPU},
|
|
{cv::dnn::DNN_BACKEND_CUDA, cv::dnn::DNN_TARGET_CUDA},
|
|
{cv::dnn::DNN_BACKEND_CUDA, cv::dnn::DNN_TARGET_CUDA_FP16},
|
|
{cv::dnn::DNN_BACKEND_TIMVX, cv::dnn::DNN_TARGET_NPU},
|
|
{cv::dnn::DNN_BACKEND_CANN, cv::dnn::DNN_TARGET_NPU}
|
|
};
|
|
|
|
int backend_id = backend_target_pairs[backend_target].first;
|
|
int target_id = backend_target_pairs[backend_target].second;
|
|
|
|
YoutuReID reid(model_path, cv::Size(128, 256), 768,
|
|
cv::Scalar(0.485, 0.456, 0.406),
|
|
cv::Scalar(0.229, 0.224, 0.225),
|
|
backend_id, target_id);
|
|
|
|
std::pair<std::vector<cv::Mat>, std::vector<std::string>> query_data = readImagesFromDirectory(query_dir);
|
|
std::pair<std::vector<cv::Mat>, std::vector<std::string>> gallery_data = readImagesFromDirectory(gallery_dir);
|
|
|
|
std::vector<std::vector<int>> indices = reid.query(query_data.first, gallery_data.first, topK);
|
|
|
|
std::map<std::string, std::vector<std::string>> results;
|
|
for (size_t i = 0; i < query_data.second.size(); ++i) {
|
|
std::vector<std::string> top_matches;
|
|
for (int idx : indices[i]) {
|
|
top_matches.push_back(gallery_data.second[idx]);
|
|
}
|
|
results[query_data.second[i]] = top_matches;
|
|
std::cout << "Query: " << query_data.second[i] << "\n";
|
|
std::cout << "\tTop-" << topK << " from gallery: ";
|
|
for (size_t j = 0; j < top_matches.size(); ++j) {
|
|
std::cout << top_matches[j] << " ";
|
|
}
|
|
std::cout << std::endl;
|
|
}
|
|
|
|
std::map<std::string, cv::Mat> results_vis = visualize(results, query_dir, gallery_dir);
|
|
|
|
if (save_flag) {
|
|
for (std::map<std::string, cv::Mat>::iterator it = results_vis.begin(); it != results_vis.end(); ++it) {
|
|
std::string save_path = "result-" + it->first;
|
|
cv::imwrite(save_path, it->second);
|
|
}
|
|
}
|
|
|
|
if (vis_flag) {
|
|
for (std::map<std::string, cv::Mat>::iterator it = results_vis.begin(); it != results_vis.end(); ++it) {
|
|
cv::namedWindow("result-" + it->first, cv::WINDOW_AUTOSIZE);
|
|
cv::imshow("result-" + it->first, it->second);
|
|
cv::waitKey(0);
|
|
cv::destroyAllWindows();
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|