|
|
|
|
|
|
|
|
|
|
|
|
|
import argparse |
|
|
|
import numpy as np |
|
import cv2 as cv |
|
|
|
|
|
opencv_python_version = lambda str_version: tuple(map(int, (str_version.split(".")))) |
|
assert opencv_python_version(cv.__version__) >= opencv_python_version("4.10.0"), \ |
|
"Please install latest opencv-python for benchmark: python3 -m pip install --upgrade opencv-python" |
|
|
|
from wechatqrcode import WeChatQRCode |
|
|
|
|
|
backend_target_pairs = [ |
|
[cv.dnn.DNN_BACKEND_OPENCV, cv.dnn.DNN_TARGET_CPU], |
|
[cv.dnn.DNN_BACKEND_CUDA, cv.dnn.DNN_TARGET_CUDA], |
|
[cv.dnn.DNN_BACKEND_CUDA, cv.dnn.DNN_TARGET_CUDA_FP16], |
|
[cv.dnn.DNN_BACKEND_TIMVX, cv.dnn.DNN_TARGET_NPU], |
|
[cv.dnn.DNN_BACKEND_CANN, cv.dnn.DNN_TARGET_NPU] |
|
] |
|
|
|
parser = argparse.ArgumentParser( |
|
description="WeChat QR code detector for detecting and parsing QR code (https://github.com/opencv/opencv_contrib/tree/master/modules/wechat_qrcode)") |
|
parser.add_argument('--input', '-i', type=str, |
|
help='Usage: Set path to the input image. Omit for using default camera.') |
|
parser.add_argument('--detect_prototxt_path', type=str, default='detect_2021nov.prototxt', |
|
help='Usage: Set path to detect.prototxt.') |
|
parser.add_argument('--detect_model_path', type=str, default='detect_2021nov.caffemodel', |
|
help='Usage: Set path to detect.caffemodel.') |
|
parser.add_argument('--sr_prototxt_path', type=str, default='sr_2021nov.prototxt', |
|
help='Usage: Set path to sr.prototxt.') |
|
parser.add_argument('--sr_model_path', type=str, default='sr_2021nov.caffemodel', |
|
help='Usage: Set path to sr.caffemodel.') |
|
parser.add_argument('--backend_target', '-bt', type=int, default=0, |
|
help='''Choose one of the backend-target pair to run this demo: |
|
{:d}: (default) OpenCV implementation + CPU, |
|
{:d}: CUDA + GPU (CUDA), |
|
{:d}: CUDA + GPU (CUDA FP16), |
|
{:d}: TIM-VX + NPU, |
|
{:d}: CANN + NPU |
|
'''.format(*[x for x in range(len(backend_target_pairs))])) |
|
parser.add_argument('--save', '-s', action='store_true', |
|
help='Usage: Specify to save file with results (i.e. bounding box, confidence level). Invalid in case of camera input.') |
|
parser.add_argument('--vis', '-v', action='store_true', |
|
help='Usage: Specify to open a new window to show results. Invalid in case of camera input.') |
|
args = parser.parse_args() |
|
|
|
def visualize(image, res, points, points_color=(0, 255, 0), text_color=(0, 255, 0), fps=None): |
|
output = image.copy() |
|
h, w, _ = output.shape |
|
|
|
if fps is not None: |
|
cv.putText(output, 'FPS: {:.2f}'.format(fps), (0, 15), cv.FONT_HERSHEY_SIMPLEX, 0.5, text_color) |
|
|
|
fontScale = 0.5 |
|
fontSize = 1 |
|
for r, p in zip(res, points): |
|
p = p.astype(np.int32) |
|
for _p in p: |
|
cv.circle(output, _p, 10, points_color, -1) |
|
|
|
qrcode_center_x = int((p[0][0] + p[2][0]) / 2) |
|
qrcode_center_y = int((p[0][1] + p[2][1]) / 2) |
|
|
|
text_size, baseline = cv.getTextSize(r, cv.FONT_HERSHEY_DUPLEX, fontScale, fontSize) |
|
text_x = qrcode_center_x - int(text_size[0] / 2) |
|
text_y = qrcode_center_y - int(text_size[1] / 2) |
|
cv.putText(output, '{}'.format(r), (text_x, text_y), cv.FONT_HERSHEY_DUPLEX, fontScale, text_color, fontSize) |
|
|
|
return output |
|
|
|
|
|
if __name__ == '__main__': |
|
backend_id = backend_target_pairs[args.backend_target][0] |
|
target_id = backend_target_pairs[args.backend_target][1] |
|
|
|
|
|
model = WeChatQRCode(args.detect_prototxt_path, |
|
args.detect_model_path, |
|
args.sr_prototxt_path, |
|
args.sr_model_path, |
|
backendId=backend_id, |
|
targetId=target_id) |
|
|
|
|
|
if args.input is not None: |
|
image = cv.imread(args.input) |
|
res, points = model.infer(image) |
|
|
|
|
|
print(res) |
|
print(points) |
|
|
|
|
|
image = visualize(image, res, points) |
|
|
|
|
|
if args.save: |
|
print('Results saved to result.jpg\n') |
|
cv.imwrite('result.jpg', image) |
|
|
|
|
|
if args.vis: |
|
cv.namedWindow(args.input, cv.WINDOW_AUTOSIZE) |
|
cv.imshow(args.input, image) |
|
cv.waitKey(0) |
|
else: |
|
deviceId = 0 |
|
cap = cv.VideoCapture(deviceId) |
|
|
|
tm = cv.TickMeter() |
|
while cv.waitKey(1) < 0: |
|
hasFrame, frame = cap.read() |
|
if not hasFrame: |
|
print('No frames grabbed!') |
|
break |
|
|
|
|
|
tm.start() |
|
res, points = model.infer(frame) |
|
tm.stop() |
|
fps = tm.getFPS() |
|
|
|
|
|
frame = visualize(frame, res, points, fps=fps) |
|
|
|
|
|
cv.imshow('WeChatQRCode Demo', frame) |
|
|
|
tm.reset() |
|
|