|
|
|
|
|
|
|
|
|
|
|
|
|
import argparse |
|
|
|
import numpy as np |
|
import cv2 as cv |
|
|
|
|
|
opencv_python_version = lambda str_version: tuple(map(int, (str_version.split(".")))) |
|
assert opencv_python_version(cv.__version__) >= opencv_python_version("4.10.0"), \ |
|
"Please install latest opencv-python for benchmark: python3 -m pip install --upgrade opencv-python" |
|
|
|
from ppocr_det import PPOCRDet |
|
|
|
|
|
backend_target_pairs = [ |
|
[cv.dnn.DNN_BACKEND_OPENCV, cv.dnn.DNN_TARGET_CPU], |
|
[cv.dnn.DNN_BACKEND_CUDA, cv.dnn.DNN_TARGET_CUDA], |
|
[cv.dnn.DNN_BACKEND_CUDA, cv.dnn.DNN_TARGET_CUDA_FP16], |
|
[cv.dnn.DNN_BACKEND_TIMVX, cv.dnn.DNN_TARGET_NPU], |
|
[cv.dnn.DNN_BACKEND_CANN, cv.dnn.DNN_TARGET_NPU] |
|
] |
|
|
|
parser = argparse.ArgumentParser(description='PP-OCR Text Detection (https://arxiv.org/abs/2206.03001).') |
|
parser.add_argument('--input', '-i', type=str, |
|
help='Usage: Set path to the input image. Omit for using default camera.') |
|
parser.add_argument('--model', '-m', type=str, default='./text_detection_en_ppocrv3_2023may.onnx', |
|
help='Usage: Set model path, defaults to text_detection_en_ppocrv3_2023may.onnx.') |
|
parser.add_argument('--backend_target', '-bt', type=int, default=0, |
|
help='''Choose one of the backend-target pair to run this demo: |
|
{:d}: (default) OpenCV implementation + CPU, |
|
{:d}: CUDA + GPU (CUDA), |
|
{:d}: CUDA + GPU (CUDA FP16), |
|
{:d}: TIM-VX + NPU, |
|
{:d}: CANN + NPU |
|
'''.format(*[x for x in range(len(backend_target_pairs))])) |
|
parser.add_argument('--width', type=int, default=736, |
|
help='Usage: Resize input image to certain width, default = 736. It should be multiple by 32.') |
|
parser.add_argument('--height', type=int, default=736, |
|
help='Usage: Resize input image to certain height, default = 736. It should be multiple by 32.') |
|
parser.add_argument('--binary_threshold', type=float, default=0.3, |
|
help='Usage: Threshold of the binary map, default = 0.3.') |
|
parser.add_argument('--polygon_threshold', type=float, default=0.5, |
|
help='Usage: Threshold of polygons, default = 0.5.') |
|
parser.add_argument('--max_candidates', type=int, default=200, |
|
help='Usage: Set maximum number of polygon candidates, default = 200.') |
|
parser.add_argument('--unclip_ratio', type=np.float64, default=2.0, |
|
help=' Usage: The unclip ratio of the detected text region, which determines the output size, default = 2.0.') |
|
parser.add_argument('--save', '-s', action='store_true', |
|
help='Usage: Specify to save file with results (i.e. bounding box, confidence level). Invalid in case of camera input.') |
|
parser.add_argument('--vis', '-v', action='store_true', |
|
help='Usage: Specify to open a new window to show results. Invalid in case of camera input.') |
|
args = parser.parse_args() |
|
|
|
def visualize(image, results, box_color=(0, 255, 0), text_color=(0, 0, 255), isClosed=True, thickness=2, fps=None): |
|
output = image.copy() |
|
|
|
if fps is not None: |
|
cv.putText(output, 'FPS: {:.2f}'.format(fps), (0, 15), cv.FONT_HERSHEY_SIMPLEX, 0.5, text_color) |
|
|
|
pts = np.array(results[0]) |
|
output = cv.polylines(output, pts, isClosed, box_color, thickness) |
|
|
|
return output |
|
|
|
if __name__ == '__main__': |
|
backend_id = backend_target_pairs[args.backend_target][0] |
|
target_id = backend_target_pairs[args.backend_target][1] |
|
|
|
|
|
model = PPOCRDet(modelPath=args.model, |
|
inputSize=[args.width, args.height], |
|
binaryThreshold=args.binary_threshold, |
|
polygonThreshold=args.polygon_threshold, |
|
maxCandidates=args.max_candidates, |
|
unclipRatio=args.unclip_ratio, |
|
backendId=backend_id, |
|
targetId=target_id) |
|
|
|
|
|
if args.input is not None: |
|
original_image = cv.imread(args.input) |
|
original_w = original_image.shape[1] |
|
original_h = original_image.shape[0] |
|
scaleHeight = original_h / args.height |
|
scaleWidth = original_w / args.width |
|
image = cv.resize(original_image, [args.width, args.height]) |
|
|
|
|
|
results = model.infer(image) |
|
|
|
|
|
for i in range(len(results[0])): |
|
for j in range(4): |
|
box = results[0][i][j] |
|
results[0][i][j][0] = box[0] * scaleWidth |
|
results[0][i][j][1] = box[1] * scaleHeight |
|
|
|
|
|
print('{} texts detected.'.format(len(results[0]))) |
|
for idx, (bbox, score) in enumerate(zip(results[0], results[1])): |
|
print('{}: {} {} {} {}, {:.2f}'.format(idx, bbox[0], bbox[1], bbox[2], bbox[3], score)) |
|
|
|
|
|
original_image = visualize(original_image, results) |
|
|
|
|
|
if args.save: |
|
print('Resutls saved to result.jpg\n') |
|
cv.imwrite('result.jpg', original_image) |
|
|
|
|
|
if args.vis: |
|
cv.namedWindow(args.input, cv.WINDOW_AUTOSIZE) |
|
cv.imshow(args.input, original_image) |
|
cv.waitKey(0) |
|
else: |
|
deviceId = 0 |
|
cap = cv.VideoCapture(deviceId) |
|
|
|
tm = cv.TickMeter() |
|
while cv.waitKey(1) < 0: |
|
hasFrame, original_image = cap.read() |
|
if not hasFrame: |
|
print('No frames grabbed!') |
|
break |
|
|
|
original_w = original_image.shape[1] |
|
original_h = original_image.shape[0] |
|
scaleHeight = original_h / args.height |
|
scaleWidth = original_w / args.width |
|
frame = cv.resize(original_image, [args.width, args.height]) |
|
|
|
tm.start() |
|
results = model.infer(frame) |
|
tm.stop() |
|
|
|
|
|
for i in range(len(results[0])): |
|
for j in range(4): |
|
box = results[0][i][j] |
|
results[0][i][j][0] = box[0] * scaleWidth |
|
results[0][i][j][1] = box[1] * scaleHeight |
|
|
|
|
|
original_image = visualize(original_image, results, fps=tm.getFPS()) |
|
|
|
|
|
cv.imshow('{} Demo'.format(model.name), original_image) |
|
|
|
tm.reset() |
|
|