|
# CRNN |
|
|
|
[An End-to-End Trainable Neural Network for Image-based Sequence Recognition and Its Application to Scene Text Recognition](https://arxiv.org/abs/1507.05717) |
|
|
|
Results of accuracy evaluation with [tools/eval](../../tools/eval) at different text recognition datasets. |
|
|
|
| Model name | ICDAR03(%) | IIIT5k(%) | CUTE80(%) | |
|
| ------------ | ---------- | --------- | --------- | |
|
| CRNN_EN | 81.66 | 74.33 | 52.78 | |
|
| CRNN_EN_FP16 | 82.01 | 74.93 | 52.34 | |
|
| CRNN_EN_INT8 | 81.75 | 75.33 | 52.43 | |
|
| CRNN_CH | 71.28 | 80.90 | 67.36 | |
|
| CRNN_CH_FP16 | 78.63 | 80.93 | 67.01 | |
|
| CRNN_CH_INT8 | 78.11 | 81.20 | 67.01 | |
|
|
|
\*: 'FP16' or 'INT8' stands for 'model quantized into FP16' or 'model quantized into int8' |
|
|
|
**Note**: |
|
|
|
- Model source: |
|
- `text_recognition_CRNN_EN_2021sep.onnx`: https://docs.opencv.org/4.5.2/d9/d1e/tutorial_dnn_OCR.html (CRNN_VGG_BiLSTM_CTC.onnx) |
|
- `text_recognition_CRNN_CH_2021sep.onnx`: https://docs.opencv.org/4.x/d4/d43/tutorial_dnn_text_spotting.html (crnn_cs.onnx) |
|
- `text_recognition_CRNN_CN_2021nov.onnx`: https://docs.opencv.org/4.5.2/d4/d43/tutorial_dnn_text_spotting.html (crnn_cs_CN.onnx) |
|
- `text_recognition_CRNN_EN_2021sep.onnx` can detect digits (0\~9) and letters (return lowercase letters a\~z) (see `CHARSET_EN_36` for details in `crnn.py`). |
|
- `text_recognition_CRNN_CH_2021sep.onnx` can detect digits (0\~9), upper/lower-case letters (a\~z and A\~Z), and some special characters (see `CHARSET_CH_94` for details in `crnn.py`). |
|
- `text_recognition_CRNN_CN_2021nov.onnx` can detect digits (0\~9), upper/lower-case letters (a\~z and A\~Z), some Chinese characters and some special characters (see `CHARSET_CN_3944` for details in `crnn.py`). |
|
- For details on training this model series, please visit https://github.com/zihaomu/deep-text-recognition-benchmark. |
|
- `text_recognition_CRNN_XX_2021xxx_int8bq.onnx` represents the block-quantized version in int8 precision and is generated using [block_quantize.py](../../tools/quantize/block_quantize.py) with `block_size=64`. |
|
|
|
## Demo |
|
|
|
***NOTE***: |
|
|
|
- This demo uses [text_detection_db](../text_detection_db) as text detector. |
|
|
|
### Python |
|
|
|
Run the demo detecting English: |
|
|
|
```shell |
|
# detect on camera input |
|
python demo.py |
|
# detect on an image |
|
python demo.py --input /path/to/image -v |
|
|
|
# get help regarding various parameters |
|
python demo.py --help |
|
``` |
|
|
|
Run the demo detecting Chinese: |
|
|
|
```shell |
|
# detect on camera input |
|
python demo.py --model text_recognition_CRNN_CN_2021nov.onnx |
|
# detect on an image |
|
python demo.py --input /path/to/image --model text_recognition_CRNN_CN_2021nov.onnx |
|
|
|
# get help regarding various parameters |
|
python demo.py --help |
|
``` |
|
### C++ |
|
|
|
Install latest OpenCV and CMake >= 3.24.0 to get started with: |
|
|
|
```shell |
|
# detect on camera input |
|
./build/opencv_zoo_text_recognition_crnn |
|
# detect on an image |
|
./build/opencv_zoo_text_recognition_crnn --input /path/to/image -v |
|
|
|
# get help regarding various parameters |
|
./build/opencv_zoo_text_recognition_crnn --help |
|
``` |
|
|
|
Run the demo detecting Chinese: |
|
|
|
```shell |
|
# detect on camera input |
|
./build/opencv_zoo_text_recognition_crnn --model=text_recognition_CRNN_CN_2021nov.onnx --charset=charset_3944_CN.txt |
|
# detect on an image |
|
./build/opencv_zoo_text_recognition_crnn --input=/path/to/image --model=text_recognition_CRNN_CN_2021nov.onnx --charset=charset_3944_CN.txt |
|
|
|
# get help regarding various parameters |
|
./build/opencv_zoo_text_recognition_crnn --help |
|
``` |
|
|
|
### Examples |
|
|
|
 |
|
|
|
 |
|
|
|
## License |
|
|
|
All files in this directory are licensed under [Apache 2.0 License](./LICENSE). |
|
|
|
## Reference |
|
|
|
- https://arxiv.org/abs/1507.05717 |
|
- https://github.com/bgshih/crnn |
|
- https://github.com/meijieru/crnn.pytorch |
|
- https://github.com/zihaomu/deep-text-recognition-benchmark |
|
- https://docs.opencv.org/4.5.2/d9/d1e/tutorial_dnn_OCR.html |
|
|