Inference Provider

VERIFIED
12,196,572 monthly requests

AI & ML interests

None defined yet.

tomaarsen 
posted an update 2 days ago
view post
Post
3340
😎 I just published Sentence Transformers v5.1.0, and it's a big one. 2x-3x speedups of SparseEncoder models via ONNX and/or OpenVINO backends, easier distillation data preparation with hard negatives mining, and more:

1️⃣ Faster ONNX and OpenVINO backends for SparseEncoder models
Usage is as simple as backend="onnx" or backend="openvino" when initializing a SparseEncoder to get started, but I also included utility functions for optimization, dynamic quantization, and static quantization, plus benchmarks.

2️⃣ New n-tuple-scores output format from mine_hard_negatives
This new output format is immediately compatible with the MarginMSELoss and SparseMarginMSELoss for training SentenceTransformer, CrossEncoder, and SparseEncoder losses.

3️⃣ Gathering across devices
When doing multi-GPU training using a loss that has in-batch negatives (e.g. MultipleNegativesRankingLoss), you can now use gather_across_devices=True to load in-batch negatives from the other devices too! Essentially a free lunch, pretty big impact potential in my evals.

4️⃣ Trackio support
If you also upgrade transformers, and you install trackio with pip install trackio, then your experiments will also automatically be tracked locally with trackio. Just open up localhost and have a look at your losses/evals, no logins, no metric uploading.

5️⃣ MTEB Documentation
We've added some documentation on evaluating SentenceTransformer models properly with MTEB. It's rudimentary as the documentation on the MTEB side is already great, but it should get you started.

Plus many more smaller features & fixes (crash fixes, compatibility with datasets v4, FIPS compatibility, etc.).

See the full release notes here: https://github.com/UKPLab/sentence-transformers/releases/tag/v5.1.0

Big thanks to all of the contributors for helping with the release, many of the features from this release were proposed by others. I have a big list of future potential features that I'd love to add, but I'm
hlarcher 
posted an update 8 days ago
view post
Post
202
GH200 cooking time 🧑‍🍳🔥!

We just updated GPU-fryer 🍳 to run on Grace Hopper Superchip (GH200) - fully optimized for ARM-based systems!
With this release, we switched to cuBLASLt to support running FP8 benchmarks. You can monitor GPU throttling, TFLOPS outliers, HBM memory health, and ensure that you get the most of your hardware setup.
Perfect for stress testing and tuning datacenter GPUs.

Check it out on Github 👉 https://github.com/huggingface/gpu-fryer
Wauplin 
posted an update 14 days ago
view post
Post
2860
Say hello to hf: a faster, friendlier Hugging Face CLI ✨

We are glad to announce a long-awaited quality-of-life improvement: the Hugging Face CLI has been officially renamed from huggingface-cli to hf!

So... why this change?

Typing huggingface-cli constantly gets old fast. More importantly, the CLI’s command structure became messy as new features were added over time (upload, download, cache management, repo management, etc.). Renaming the CLI is a chance to reorganize commands into a clearer, more consistent format.

We decided not to reinvent the wheel and instead follow a well-known CLI pattern: hf <resource> <action>. Isn't hf auth login easier to type and remember?

The full rationale, implementation details, and migration notes are in the blog post: https://huggingface.co/blog/hf-cli

erikkaum 
posted an update 21 days ago
view post
Post
2554
ZML just released a technical preview of their new Inference Engine: LLMD.

- Just 2.4GB container, which means fast startup times and efficient autoscaling
- Cross-Platform GPU Support: works on both NVIDIA and AMD GPUs.
- written in Zig

I just tried it out and deployed it on Hugging Face Inference Endpoints and wrote a quick guide 👇 You can try it in like 5 minutes!

https://huggingface.co/blog/erikkaum/test-driving-llmd-inference-engine
  • 1 reply
·
erikkaum 
posted an update 22 days ago
view post
Post
2003
We just released native support for @SGLang and @vllm-project in Inference Endpoints 🔥

Inference Endpoints is becoming the central place where you deploy high performance Inference Engines.

And that provides the managed infra for it. Instead of spending weeks configuring infrastructure, managing servers, and debugging deployment issues, you can focus on what matters most: your AI model and your users 🙌
tomaarsen 
posted an update about 1 month ago
view post
Post
2945
‼️Sentence Transformers v5.0 is out! The biggest update yet introduces Sparse Embedding models, encode methods improvements, Router module for asymmetric models & much more. Sparse + Dense = 🔥 hybrid search performance! Details:

1️⃣ Sparse Encoder Models
Brand new support for sparse embedding models that generate high-dimensional embeddings (30,000+ dims) where <1% are non-zero:

- Full SPLADE, Inference-free SPLADE, and CSR architecture support
- 4 new modules, 12 new losses, 9 new evaluators
- Integration with @elastic-co , @opensearch-project , @NAVER LABS Europe, @qdrant , @IBM , etc.
- Decode interpretable embeddings to understand token importance
- Hybrid search integration to get the best of both worlds

2️⃣ Enhanced Encode Methods & Multi-Processing
- Introduce encode_query & encode_document automatically use predefined prompts
- No more manual pool management - just pass device list directly to encode()
- Much cleaner and easier to use than the old multi-process approach

3️⃣ Router Module & Advanced Training
- Router module with different processing paths for queries vs documents
- Custom learning rates for different parameter groups
- Composite loss logging - see individual loss components
- Perfect for two-tower architectures

4️⃣ Comprehensive Documentation & Training
- New Training Overview, Loss Overview, API Reference docs
- 6 new training example documentation pages
- Full integration examples with major search engines
- Extensive blogpost on training sparse models

Read the comprehensive blogpost about training sparse embedding models: https://huggingface.co/blog/train-sparse-encoder

See the full release notes here: https://github.com/UKPLab/sentence-transformers/releases/v5.0.0

What's next? We would love to hear from the community! What sparse encoder models would you like to see? And what new capabilities should Sentence Transformers handle - multimodal embeddings, late interaction models, or something else? Your feedback shapes our roadmap!
jeffboudier 
posted an update about 2 months ago
view post
Post
476
AMD summer hackathons are here!
A chance to get hands-on with MI300X GPUs and accelerate models.
🇫🇷 Paris - Station F - July 5-6
🇮🇳 Mumbai - July 12-13
🇮🇳 Bengaluru - July 19-20

Hugging Face and GPU Mode will be on site and on July 6 in Paris @ror will share lessons learned while building new kernels to accelerate Llama 3.1 405B on ROCm

Register to Paris event: https://lu.ma/fmvdjmur?tk=KeAbiP
All dates: https://lu.ma/calendar/cal-3sxhD5FdxWsMDIz
reach-vb 
posted an update about 2 months ago
view post
Post
3802
Excited to onboard FeatherlessAI on Hugging Face as an Inference Provider - they bring a fleet of 6,700+ LLMs on-demand on the Hugging Face Hub 🤯

Starting today, you'd be able to access all those LLMs (OpenAI compatible) on HF model pages and via OpenAI client libraries too! 💥

Go, play with it today: https://huggingface.co/blog/inference-providers-featherless

P.S. They're also bringing on more GPUs to support all your concurrent requests!
jeffboudier 
posted an update about 2 months ago
view post
Post
1683
Today we launched Training Cluster as a Service, to make the new DGX Cloud Lepton supercloud easily accessible to AI researchers.

Hugging Face will collaborate with NVIDIA to provision and set up GPU training clusters to make them available for the duration of training runs.

Hugging Face organizations can sign up here: https://huggingface.co/training-cluster
victor 
posted an update about 2 months ago
view post
Post
4444
Open Source Avengers, Assemble! Ask an expert AI agent team to solve complex problems together 🔥

Consilium brings together multiple agents that debate and use live research (web, arXiv, SEC) to reach a consensus. You set the strategy, they find the answer.

Credit to @azettl for this awesome demo: Agents-MCP-Hackathon/consilium_mcp
  • 2 replies
·
jeffboudier 
posted an update 2 months ago
jeffboudier 
posted an update 3 months ago
view post
Post
496
Wrapping up a week of shipping and announcements with Dell Enterprise Hub now featuring AI Applications, on-device models for AI PCs, a new CLI and Python SDK... all you need for building AI on premises!

Blog post has all the details: https://huggingface.co/blog/dell-ai-applications
celinah 
posted an update 3 months ago
view post
Post
2431
✨ Today we’re releasing Tiny Agents in Python — an MCP-powered Agent in ~70 lines of code 🐍

Inspired by Tiny Agents in JS from @julien-c , we ported the idea to Python and integrated it directly into huggingface_hub — with a built-in MCP Client and a Tiny Agents CLI.

TL;DR: With MCP (Model Context Protocol), you can expose tools like web search or image generation and connect them directly to LLMs. It’s simple — and surprisingly powerful.

pip install "huggingface_hub[mcp]>=0.32.0"

We wrote a blog post where we show how to run Tiny Agents, and dive deeper into how they work and how to build your own.
👉 https://huggingface.co/blog/python-tiny-agents

  • 1 reply
·
reach-vb 
posted an update 3 months ago
view post
Post
4212
hey hey @mradermacher - VB from Hugging Face here, we'd love to onboard you over to our optimised xet backend! 💥

as you know we're in the process of upgrading our storage backend to xet (which helps us scale and offer blazingly fast upload/ download speeds too): https://huggingface.co/blog/xet-on-the-hub and now that we are certain that the backend can scale with even big models like Llama 4/ Qwen 3 - we;re moving to the next phase of inviting impactful orgs and users on the hub over as you are a big part of the open source ML community - we would love to onboard you next and create some excitement about it in the community too!

in terms of actual steps - it should be as simple as one of the org admins to join hf.co/join/xet - we'll take care of the rest.

p.s. you'd need to have a the latest hf_xet version of huggingface_hub lib but everything else should be the same: https://huggingface.co/docs/hub/storage-backends#using-xet-storage

p.p.s. this is fully backwards compatible so everything will work as it should! 🤗
·