|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
''' |
|
probing tasks |
|
''' |
|
|
|
from __future__ import absolute_import, division, unicode_literals |
|
|
|
import os |
|
import io |
|
import copy |
|
import logging |
|
import numpy as np |
|
|
|
from senteval.tools.validation import SplitClassifier |
|
|
|
|
|
class PROBINGEval(object): |
|
def __init__(self, task, task_path, seed=1111): |
|
self.seed = seed |
|
self.task = task |
|
logging.debug('***** (Probing) Transfer task : %s classification *****', self.task.upper()) |
|
self.task_data = {'train': {'X': [], 'y': []}, |
|
'dev': {'X': [], 'y': []}, |
|
'test': {'X': [], 'y': []}} |
|
self.loadFile(task_path) |
|
logging.info('Loaded %s train - %s dev - %s test for %s' % |
|
(len(self.task_data['train']['y']), len(self.task_data['dev']['y']), |
|
len(self.task_data['test']['y']), self.task)) |
|
|
|
def do_prepare(self, params, prepare): |
|
samples = self.task_data['train']['X'] + self.task_data['dev']['X'] + \ |
|
self.task_data['test']['X'] |
|
return prepare(params, samples) |
|
|
|
def loadFile(self, fpath): |
|
self.tok2split = {'tr': 'train', 'va': 'dev', 'te': 'test'} |
|
with io.open(fpath, 'r', encoding='utf-8') as f: |
|
for line in f: |
|
line = line.rstrip().split('\t') |
|
self.task_data[self.tok2split[line[0]]]['X'].append(line[-1].split()) |
|
self.task_data[self.tok2split[line[0]]]['y'].append(line[1]) |
|
|
|
labels = sorted(np.unique(self.task_data['train']['y'])) |
|
self.tok2label = dict(zip(labels, range(len(labels)))) |
|
self.nclasses = len(self.tok2label) |
|
|
|
for split in self.task_data: |
|
for i, y in enumerate(self.task_data[split]['y']): |
|
self.task_data[split]['y'][i] = self.tok2label[y] |
|
|
|
def run(self, params, batcher): |
|
task_embed = {'train': {}, 'dev': {}, 'test': {}} |
|
bsize = params.batch_size |
|
logging.info('Computing embeddings for train/dev/test') |
|
for key in self.task_data: |
|
|
|
sorted_data = sorted(zip(self.task_data[key]['X'], |
|
self.task_data[key]['y']), |
|
key=lambda z: (len(z[0]), z[1])) |
|
self.task_data[key]['X'], self.task_data[key]['y'] = map(list, zip(*sorted_data)) |
|
|
|
task_embed[key]['X'] = [] |
|
for ii in range(0, len(self.task_data[key]['y']), bsize): |
|
batch = self.task_data[key]['X'][ii:ii + bsize] |
|
embeddings = batcher(params, batch) |
|
task_embed[key]['X'].append(embeddings) |
|
task_embed[key]['X'] = np.vstack(task_embed[key]['X']) |
|
task_embed[key]['y'] = np.array(self.task_data[key]['y']) |
|
logging.info('Computed embeddings') |
|
|
|
config_classifier = {'nclasses': self.nclasses, 'seed': self.seed, |
|
'usepytorch': params.usepytorch, |
|
'classifier': params.classifier} |
|
|
|
if self.task == "WordContent" and params.classifier['nhid'] > 0: |
|
config_classifier = copy.deepcopy(config_classifier) |
|
config_classifier['classifier']['nhid'] = 0 |
|
print(params.classifier['nhid']) |
|
|
|
clf = SplitClassifier(X={'train': task_embed['train']['X'], |
|
'valid': task_embed['dev']['X'], |
|
'test': task_embed['test']['X']}, |
|
y={'train': task_embed['train']['y'], |
|
'valid': task_embed['dev']['y'], |
|
'test': task_embed['test']['y']}, |
|
config=config_classifier) |
|
|
|
devacc, testacc = clf.run() |
|
logging.debug('\nDev acc : %.1f Test acc : %.1f for %s classification\n' % (devacc, testacc, self.task.upper())) |
|
|
|
return {'devacc': devacc, 'acc': testacc, |
|
'ndev': len(task_embed['dev']['X']), |
|
'ntest': len(task_embed['test']['X'])} |
|
|
|
""" |
|
Surface Information |
|
""" |
|
class LengthEval(PROBINGEval): |
|
def __init__(self, task_path, seed=1111): |
|
task_path = os.path.join(task_path, 'sentence_length.txt') |
|
|
|
PROBINGEval.__init__(self, 'Length', task_path, seed) |
|
|
|
class WordContentEval(PROBINGEval): |
|
def __init__(self, task_path, seed=1111): |
|
task_path = os.path.join(task_path, 'word_content.txt') |
|
|
|
PROBINGEval.__init__(self, 'WordContent', task_path, seed) |
|
|
|
""" |
|
Latent Structural Information |
|
""" |
|
class DepthEval(PROBINGEval): |
|
def __init__(self, task_path, seed=1111): |
|
task_path = os.path.join(task_path, 'tree_depth.txt') |
|
|
|
PROBINGEval.__init__(self, 'Depth', task_path, seed) |
|
|
|
class TopConstituentsEval(PROBINGEval): |
|
def __init__(self, task_path, seed=1111): |
|
task_path = os.path.join(task_path, 'top_constituents.txt') |
|
|
|
PROBINGEval.__init__(self, 'TopConstituents', task_path, seed) |
|
|
|
class BigramShiftEval(PROBINGEval): |
|
def __init__(self, task_path, seed=1111): |
|
task_path = os.path.join(task_path, 'bigram_shift.txt') |
|
|
|
PROBINGEval.__init__(self, 'BigramShift', task_path, seed) |
|
|
|
|
|
|
|
""" |
|
Latent Semantic Information |
|
""" |
|
|
|
class TenseEval(PROBINGEval): |
|
def __init__(self, task_path, seed=1111): |
|
task_path = os.path.join(task_path, 'past_present.txt') |
|
|
|
PROBINGEval.__init__(self, 'Tense', task_path, seed) |
|
|
|
class SubjNumberEval(PROBINGEval): |
|
def __init__(self, task_path, seed=1111): |
|
task_path = os.path.join(task_path, 'subj_number.txt') |
|
|
|
PROBINGEval.__init__(self, 'SubjNumber', task_path, seed) |
|
|
|
class ObjNumberEval(PROBINGEval): |
|
def __init__(self, task_path, seed=1111): |
|
task_path = os.path.join(task_path, 'obj_number.txt') |
|
|
|
PROBINGEval.__init__(self, 'ObjNumber', task_path, seed) |
|
|
|
class OddManOutEval(PROBINGEval): |
|
def __init__(self, task_path, seed=1111): |
|
task_path = os.path.join(task_path, 'odd_man_out.txt') |
|
|
|
PROBINGEval.__init__(self, 'OddManOut', task_path, seed) |
|
|
|
class CoordinationInversionEval(PROBINGEval): |
|
def __init__(self, task_path, seed=1111): |
|
task_path = os.path.join(task_path, 'coordination_inversion.txt') |
|
|
|
PROBINGEval.__init__(self, 'CoordinationInversion', task_path, seed) |
|
|