|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
''' |
|
STS-{2012,2013,2014,2015,2016} (unsupervised) and |
|
STS-benchmark (supervised) tasks |
|
''' |
|
|
|
from __future__ import absolute_import, division, unicode_literals |
|
|
|
import os |
|
import io |
|
import numpy as np |
|
import logging |
|
|
|
from scipy.stats import spearmanr, pearsonr |
|
|
|
from senteval.utils import cosine |
|
from senteval.sick import SICKEval |
|
|
|
|
|
class STSEval(object): |
|
def loadFile(self, fpath): |
|
self.data = {} |
|
self.samples = [] |
|
|
|
for dataset in self.datasets: |
|
sent1, sent2 = zip(*[l.split("\t") for l in |
|
io.open(fpath + '/STS.input.%s.txt' % dataset, |
|
encoding='utf8').read().splitlines()]) |
|
raw_scores = np.array([x for x in |
|
io.open(fpath + '/STS.gs.%s.txt' % dataset, |
|
encoding='utf8') |
|
.read().splitlines()]) |
|
not_empty_idx = raw_scores != '' |
|
|
|
gs_scores = [float(x) for x in raw_scores[not_empty_idx]] |
|
sent1 = np.array([s.split() for s in sent1])[not_empty_idx] |
|
sent2 = np.array([s.split() for s in sent2])[not_empty_idx] |
|
|
|
sorted_data = sorted(zip(sent1, sent2, gs_scores), |
|
key=lambda z: (len(z[0]), len(z[1]), z[2])) |
|
sent1, sent2, gs_scores = map(list, zip(*sorted_data)) |
|
|
|
self.data[dataset] = (sent1, sent2, gs_scores) |
|
self.samples += sent1 + sent2 |
|
|
|
def do_prepare(self, params, prepare): |
|
if 'similarity' in params: |
|
self.similarity = params.similarity |
|
else: |
|
self.similarity = lambda s1, s2: np.nan_to_num(cosine(np.nan_to_num(s1), np.nan_to_num(s2))) |
|
return prepare(params, self.samples) |
|
|
|
def run(self, params, batcher): |
|
results = {} |
|
all_sys_scores = [] |
|
all_gs_scores = [] |
|
for dataset in self.datasets: |
|
sys_scores = [] |
|
input1, input2, gs_scores = self.data[dataset] |
|
for ii in range(0, len(gs_scores), params.batch_size): |
|
batch1 = input1[ii:ii + params.batch_size] |
|
batch2 = input2[ii:ii + params.batch_size] |
|
|
|
|
|
if len(batch1) == len(batch2) and len(batch1) > 0: |
|
enc1 = batcher(params, batch1) |
|
enc2 = batcher(params, batch2) |
|
|
|
for kk in range(enc2.shape[0]): |
|
sys_score = self.similarity(enc1[kk], enc2[kk]) |
|
sys_scores.append(sys_score) |
|
all_sys_scores.extend(sys_scores) |
|
all_gs_scores.extend(gs_scores) |
|
results[dataset] = {'pearson': pearsonr(sys_scores, gs_scores), |
|
'spearman': spearmanr(sys_scores, gs_scores), |
|
'nsamples': len(sys_scores)} |
|
logging.debug('%s : pearson = %.4f, spearman = %.4f' % |
|
(dataset, results[dataset]['pearson'][0], |
|
results[dataset]['spearman'][0])) |
|
|
|
weights = [results[dset]['nsamples'] for dset in results.keys()] |
|
list_prs = np.array([results[dset]['pearson'][0] for |
|
dset in results.keys()]) |
|
list_spr = np.array([results[dset]['spearman'][0] for |
|
dset in results.keys()]) |
|
|
|
avg_pearson = np.average(list_prs) |
|
avg_spearman = np.average(list_spr) |
|
wavg_pearson = np.average(list_prs, weights=weights) |
|
wavg_spearman = np.average(list_spr, weights=weights) |
|
all_pearson = pearsonr(all_sys_scores, all_gs_scores) |
|
all_spearman = spearmanr(all_sys_scores, all_gs_scores) |
|
results['all'] = {'pearson': {'all': all_pearson[0], |
|
'mean': avg_pearson, |
|
'wmean': wavg_pearson}, |
|
'spearman': {'all': all_spearman[0], |
|
'mean': avg_spearman, |
|
'wmean': wavg_spearman}} |
|
logging.debug('ALL : Pearson = %.4f, \ |
|
Spearman = %.4f' % (all_pearson[0], all_spearman[0])) |
|
logging.debug('ALL (weighted average) : Pearson = %.4f, \ |
|
Spearman = %.4f' % (wavg_pearson, wavg_spearman)) |
|
logging.debug('ALL (average) : Pearson = %.4f, \ |
|
Spearman = %.4f\n' % (avg_pearson, avg_spearman)) |
|
|
|
return results |
|
|
|
|
|
class STS12Eval(STSEval): |
|
def __init__(self, taskpath, seed=1111): |
|
logging.debug('***** Transfer task : STS12 *****\n\n') |
|
self.seed = seed |
|
self.datasets = ['MSRpar', 'MSRvid', 'SMTeuroparl', |
|
'surprise.OnWN', 'surprise.SMTnews'] |
|
self.loadFile(taskpath) |
|
|
|
|
|
class STS13Eval(STSEval): |
|
|
|
def __init__(self, taskpath, seed=1111): |
|
logging.debug('***** Transfer task : STS13 (-SMT) *****\n\n') |
|
self.seed = seed |
|
self.datasets = ['FNWN', 'headlines', 'OnWN'] |
|
self.loadFile(taskpath) |
|
|
|
|
|
class STS14Eval(STSEval): |
|
def __init__(self, taskpath, seed=1111): |
|
logging.debug('***** Transfer task : STS14 *****\n\n') |
|
self.seed = seed |
|
self.datasets = ['deft-forum', 'deft-news', 'headlines', |
|
'images', 'OnWN', 'tweet-news'] |
|
self.loadFile(taskpath) |
|
|
|
|
|
class STS15Eval(STSEval): |
|
def __init__(self, taskpath, seed=1111): |
|
logging.debug('***** Transfer task : STS15 *****\n\n') |
|
self.seed = seed |
|
self.datasets = ['answers-forums', 'answers-students', |
|
'belief', 'headlines', 'images'] |
|
self.loadFile(taskpath) |
|
|
|
|
|
class STS16Eval(STSEval): |
|
def __init__(self, taskpath, seed=1111): |
|
logging.debug('***** Transfer task : STS16 *****\n\n') |
|
self.seed = seed |
|
self.datasets = ['answer-answer', 'headlines', 'plagiarism', |
|
'postediting', 'question-question'] |
|
self.loadFile(taskpath) |
|
|
|
|
|
class STSBenchmarkEval(STSEval): |
|
def __init__(self, task_path, seed=1111): |
|
logging.debug('\n\n***** Transfer task : STSBenchmark*****\n\n') |
|
self.seed = seed |
|
self.samples = [] |
|
train = self.loadFile(os.path.join(task_path, 'sts-train.csv')) |
|
dev = self.loadFile(os.path.join(task_path, 'sts-dev.csv')) |
|
test = self.loadFile(os.path.join(task_path, 'sts-test.csv')) |
|
self.datasets = ['train', 'dev', 'test'] |
|
self.data = {'train': train, 'dev': dev, 'test': test} |
|
|
|
def loadFile(self, fpath): |
|
sick_data = {'X_A': [], 'X_B': [], 'y': []} |
|
with io.open(fpath, 'r', encoding='utf-8') as f: |
|
for line in f: |
|
text = line.strip().split('\t') |
|
sick_data['X_A'].append(text[5].split()) |
|
sick_data['X_B'].append(text[6].split()) |
|
sick_data['y'].append(text[4]) |
|
|
|
sick_data['y'] = [float(s) for s in sick_data['y']] |
|
self.samples += sick_data['X_A'] + sick_data["X_B"] |
|
return (sick_data['X_A'], sick_data["X_B"], sick_data['y']) |
|
|
|
class STSBenchmarkFinetune(SICKEval): |
|
def __init__(self, task_path, seed=1111): |
|
logging.debug('\n\n***** Transfer task : STSBenchmark*****\n\n') |
|
self.seed = seed |
|
train = self.loadFile(os.path.join(task_path, 'sts-train.csv')) |
|
dev = self.loadFile(os.path.join(task_path, 'sts-dev.csv')) |
|
test = self.loadFile(os.path.join(task_path, 'sts-test.csv')) |
|
self.sick_data = {'train': train, 'dev': dev, 'test': test} |
|
|
|
def loadFile(self, fpath): |
|
sick_data = {'X_A': [], 'X_B': [], 'y': []} |
|
with io.open(fpath, 'r', encoding='utf-8') as f: |
|
for line in f: |
|
text = line.strip().split('\t') |
|
sick_data['X_A'].append(text[5].split()) |
|
sick_data['X_B'].append(text[6].split()) |
|
sick_data['y'].append(text[4]) |
|
|
|
sick_data['y'] = [float(s) for s in sick_data['y']] |
|
return sick_data |
|
|
|
class SICKRelatednessEval(STSEval): |
|
def __init__(self, task_path, seed=1111): |
|
logging.debug('\n\n***** Transfer task : SICKRelatedness*****\n\n') |
|
self.seed = seed |
|
self.samples = [] |
|
train = self.loadFile(os.path.join(task_path, 'SICK_train.txt')) |
|
dev = self.loadFile(os.path.join(task_path, 'SICK_trial.txt')) |
|
test = self.loadFile(os.path.join(task_path, 'SICK_test_annotated.txt')) |
|
self.datasets = ['train', 'dev', 'test'] |
|
self.data = {'train': train, 'dev': dev, 'test': test} |
|
|
|
def loadFile(self, fpath): |
|
skipFirstLine = True |
|
sick_data = {'X_A': [], 'X_B': [], 'y': []} |
|
with io.open(fpath, 'r', encoding='utf-8') as f: |
|
for line in f: |
|
if skipFirstLine: |
|
skipFirstLine = False |
|
else: |
|
text = line.strip().split('\t') |
|
sick_data['X_A'].append(text[1].split()) |
|
sick_data['X_B'].append(text[2].split()) |
|
sick_data['y'].append(text[3]) |
|
|
|
sick_data['y'] = [float(s) for s in sick_data['y']] |
|
self.samples += sick_data['X_A'] + sick_data["X_B"] |
|
return (sick_data['X_A'], sick_data["X_B"], sick_data['y']) |
|
|