siglip2 / handler.py
peterproofpath's picture
Update handler.py
32936bc verified
"""
SigLIP 2 Custom Inference Handler for Hugging Face Inference Endpoints
Model: google/siglip2-so400m-patch14-384 (Best balance of performance/quality)
For ProofPath video assessment - identifies objects, tools, and actions in video frames.
"""
from typing import Dict, List, Any, Union
import torch
import numpy as np
import base64
import io
from PIL import Image
class EndpointHandler:
def __init__(self, path: str = ""):
"""
Initialize SigLIP 2 model for image/frame classification and embedding.
Args:
path: Path to the model directory (provided by HF Inference Endpoints)
"""
from transformers import AutoProcessor, AutoModel
# Always load from the official Google model on HuggingFace Hub
# (path points to /repository which is our custom handler, not the model weights)
model_id = "google/siglip2-so400m-patch14-384"
# Determine device
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Load processor and model
self.processor = AutoProcessor.from_pretrained(model_id)
self.model = AutoModel.from_pretrained(
model_id,
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
device_map="auto" if torch.cuda.is_available() else None,
attn_implementation="sdpa" # Use scaled dot product attention
)
if not torch.cuda.is_available():
self.model = self.model.to(self.device)
self.model.eval()
def _decode_image(self, image_data: Any) -> Image.Image:
"""
Decode image from various input formats.
Supports:
- Base64 encoded image
- URL to image
- PIL Image
- Raw bytes
"""
import requests
if isinstance(image_data, Image.Image):
return image_data
elif isinstance(image_data, str):
if image_data.startswith(('http://', 'https://')):
# URL
response = requests.get(image_data, stream=True)
return Image.open(response.raw).convert('RGB')
elif image_data.startswith('data:'):
# Data URL
header, encoded = image_data.split(',', 1)
image_bytes = base64.b64decode(encoded)
return Image.open(io.BytesIO(image_bytes)).convert('RGB')
else:
# Assume base64
image_bytes = base64.b64decode(image_data)
return Image.open(io.BytesIO(image_bytes)).convert('RGB')
elif isinstance(image_data, bytes):
return Image.open(io.BytesIO(image_data)).convert('RGB')
else:
raise ValueError(f"Unsupported image input type: {type(image_data)}")
def _process_batch(
self,
images: List[Image.Image],
texts: List[str] = None
) -> Dict[str, torch.Tensor]:
"""Process a batch of images and optional texts."""
if texts:
# SigLIP 2 requires specific padding for text
inputs = self.processor(
images=images,
text=texts,
padding="max_length",
max_length=64,
return_tensors="pt"
)
else:
inputs = self.processor(
images=images,
return_tensors="pt"
)
return {k: v.to(self.model.device) for k, v in inputs.items()}
def __call__(self, data: Dict[str, Any]) -> Dict[str, Any]:
"""
Process image(s) for classification or embedding extraction.
Expected input formats:
1. Zero-shot classification:
{
"inputs": <image_data>, # single image or list of images
"parameters": {
"candidate_labels": ["label1", "label2", ...],
"hypothesis_template": "This is a photo of {}." # Optional
}
}
2. Image embedding only:
{
"inputs": <image_data>,
"parameters": {
"mode": "embedding"
}
}
3. Image-text similarity:
{
"inputs": {
"images": [<image1>, <image2>, ...],
"texts": ["text1", "text2", ...]
},
"parameters": {
"mode": "similarity"
}
}
Returns for classification:
{
"labels": ["label1", "label2"],
"scores": [0.85, 0.12],
"predictions": [{"label": "label1", "score": 0.85}, ...]
}
Returns for embedding:
{
"image_embeddings": [[...], ...],
"embedding_shape": [batch, hidden_dim]
}
Returns for similarity:
{
"similarity_matrix": [[...], ...],
"shape": [num_images, num_texts]
}
"""
inputs = data.get("inputs")
if inputs is None:
inputs = data.get("image") or data.get("images")
if inputs is None:
raise ValueError("No input provided. Use 'inputs', 'image', or 'images' key.")
params = data.get("parameters", {})
mode = params.get("mode", "classification")
try:
# Handle different modes
if mode == "embedding":
return self._extract_embeddings(inputs)
elif mode == "similarity":
return self._compute_similarity(inputs, params)
else:
# Default: zero-shot classification
return self._classify(inputs, params)
except Exception as e:
return {"error": str(e), "error_type": type(e).__name__}
def _classify(self, inputs: Any, params: Dict) -> Dict[str, Any]:
"""Zero-shot image classification."""
candidate_labels = params.get("candidate_labels", [])
if not candidate_labels:
raise ValueError("candidate_labels required for classification mode")
hypothesis_template = params.get("hypothesis_template", "This is a photo of {}.")
# Decode image(s)
if isinstance(inputs, list):
images = [self._decode_image(img) for img in inputs]
else:
images = [self._decode_image(inputs)]
# Create text prompts from labels
texts = [hypothesis_template.format(label) for label in candidate_labels]
results = []
for image in images:
# Process single image with all candidate labels
processed = self._process_batch([image] * len(texts), texts)
with torch.no_grad():
outputs = self.model(**processed)
# SigLIP uses sigmoid, not softmax
logits_per_image = outputs.logits_per_image
probs = torch.sigmoid(logits_per_image[0]) # Shape: [num_labels]
# Sort by probability
sorted_indices = probs.argsort(descending=True)
predictions = []
for idx in sorted_indices:
predictions.append({
"label": candidate_labels[idx.item()],
"score": float(probs[idx].item())
})
results.append({
"labels": [p["label"] for p in predictions],
"scores": [p["score"] for p in predictions],
"predictions": predictions
})
# Return single result if single input
if len(results) == 1:
return results[0]
return {"results": results}
def _extract_embeddings(self, inputs: Any) -> Dict[str, Any]:
"""Extract image embeddings only."""
# Decode image(s)
if isinstance(inputs, list):
images = [self._decode_image(img) for img in inputs]
else:
images = [self._decode_image(inputs)]
processed = self.processor(images=images, return_tensors="pt")
processed = {k: v.to(self.model.device) for k, v in processed.items()}
with torch.no_grad():
# Get vision features directly
vision_outputs = self.model.get_image_features(**processed)
embeddings = vision_outputs.cpu().numpy().tolist()
return {
"image_embeddings": embeddings,
"embedding_shape": list(vision_outputs.shape)
}
def _compute_similarity(self, inputs: Dict, params: Dict) -> Dict[str, Any]:
"""Compute image-text similarity matrix."""
images_data = inputs.get("images", [])
texts = inputs.get("texts", [])
if not images_data or not texts:
raise ValueError("Both 'images' and 'texts' required for similarity mode")
# Decode images
images = [self._decode_image(img) for img in images_data]
# Process with padding for SigLIP 2
processed = self.processor(
images=images,
text=texts,
padding="max_length",
max_length=64,
return_tensors="pt"
)
processed = {k: v.to(self.model.device) for k, v in processed.items()}
with torch.no_grad():
outputs = self.model(**processed)
# Get similarity matrix
similarity = outputs.logits_per_image # [num_images, num_texts]
probs = torch.sigmoid(similarity)
return {
"similarity_matrix": probs.cpu().numpy().tolist(),
"shape": list(probs.shape),
"logits": similarity.cpu().numpy().tolist()
}