File size: 1,633 Bytes
8ea3de0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
from transformers import (
    AutoTokenizer, 
    AutoModelForSequenceClassification,
    TrainingArguments, 
    Trainer,
    DataCollatorWithPadding
)
from datasets import load_dataset
import torch

def train_model():
    # Load your model and tokenizer
    model_name = "your-username/your-model-name"
    tokenizer = AutoTokenizer.from_pretrained(model_name)
    model = AutoModelForSequenceClassification.from_pretrained(model_name)
    
    # Load your dataset (replace with actual dataset)
    dataset = load_dataset("imdb")  # Example dataset
    
    def tokenize_function(examples):
        return tokenizer(examples["text"], truncation=True)
    
    tokenized_datasets = dataset.map(tokenize_function, batched=True)
    
    # Training arguments
    training_args = TrainingArguments(
        output_dir="./results",
        learning_rate=2e-5,
        per_device_train_batch_size=16,
        per_device_eval_batch_size=16,
        num_train_epochs=3,
        weight_decay=0.01,
        evaluation_strategy="epoch",
        save_strategy="epoch",
        load_best_model_at_end=True,
    )
    
    # Initialize Trainer
    trainer = Trainer(
        model=model,
        args=training_args,
        train_dataset=tokenized_datasets["train"],
        eval_dataset=tokenized_datasets["test"],
        tokenizer=tokenizer,
        data_collator=DataCollatorWithPadding(tokenizer=tokenizer),
    )
    
    # Start training
    trainer.train()
    
    # Save the fine-tuned model
    trainer.save_model("./fine-tuned-model")
    tokenizer.save_pretrained("./fine-tuned-model")

if __name__ == "__main__":
    train_model()