|
import torch |
|
from transformers import AutoModel, AutoTokenizer |
|
import matplotlib.pyplot as plt |
|
|
|
def analyze_model(model_path): |
|
model = AutoModel.from_pretrained(model_path) |
|
tokenizer = AutoTokenizer.from_pretrained(model_path) |
|
|
|
print("=== Model Architecture ===") |
|
print(f"Model parameters: {sum(p.numel() for p in model.parameters()):,}") |
|
print(f"Layers: {len(model.encoder.layer) if hasattr(model, 'encoder') else 'N/A'}") |
|
|
|
|
|
if hasattr(model, 'encoder'): |
|
layer = model.encoder.layer[0] |
|
print(f"Attention heads: {layer.attention.self.num_attention_heads}") |
|
|
|
return model, tokenizer |
|
|
|
def plot_training_metrics(log_file='training.log'): |
|
|
|
|
|
pass |