|
from transformers import ( |
|
AutoTokenizer, |
|
AutoModelForSequenceClassification, |
|
TrainingArguments, |
|
Trainer, |
|
DataCollatorWithPadding |
|
) |
|
from datasets import load_dataset |
|
import torch |
|
|
|
def train_model(): |
|
|
|
model_name = "your-username/your-model-name" |
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
model = AutoModelForSequenceClassification.from_pretrained(model_name) |
|
|
|
|
|
dataset = load_dataset("imdb") |
|
|
|
def tokenize_function(examples): |
|
return tokenizer(examples["text"], truncation=True) |
|
|
|
tokenized_datasets = dataset.map(tokenize_function, batched=True) |
|
|
|
|
|
training_args = TrainingArguments( |
|
output_dir="./results", |
|
learning_rate=2e-5, |
|
per_device_train_batch_size=16, |
|
per_device_eval_batch_size=16, |
|
num_train_epochs=3, |
|
weight_decay=0.01, |
|
evaluation_strategy="epoch", |
|
save_strategy="epoch", |
|
load_best_model_at_end=True, |
|
) |
|
|
|
|
|
trainer = Trainer( |
|
model=model, |
|
args=training_args, |
|
train_dataset=tokenized_datasets["train"], |
|
eval_dataset=tokenized_datasets["test"], |
|
tokenizer=tokenizer, |
|
data_collator=DataCollatorWithPadding(tokenizer=tokenizer), |
|
) |
|
|
|
|
|
trainer.train() |
|
|
|
|
|
trainer.save_model("./fine-tuned-model") |
|
tokenizer.save_pretrained("./fine-tuned-model") |
|
|
|
if __name__ == "__main__": |
|
train_model() |