SentenceTransformer based on distilbert/distilbert-base-multilingual-cased
This is a sentence-transformers model finetuned from distilbert/distilbert-base-multilingual-cased. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: distilbert/distilbert-base-multilingual-cased
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: DistilBertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("pritamdeka/distilbert-base-multilingual-cased-indicxnli-random-negatives-v1")
# Run inference
sentences = [
'মই ভালদৰে জানিব নোৱাৰোঁ আপোনালোকৰ সৈতে কথা বতৰা আৰু এক ভাল সন্ধ্যা আছিল',
'মই নিশ্চিত নহয় কিন্তু মই অলপ ভাল, আজি ৰাতি আপোনালোকৰ সৈতে কথা পাতিবলৈ পাই ভাল লাগিল।',
'Shannon এ বাৰ্তা উপেক্ষা কৰিছে।',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Semantic Similarity
- Dataset:
pritamdeka/stsb-assamese-translated-dev - Evaluated with
EmbeddingSimilarityEvaluator
| Metric | Value |
|---|---|
| pearson_cosine | 0.717 |
| spearman_cosine | 0.7221 |
| pearson_manhattan | 0.738 |
| spearman_manhattan | 0.7452 |
| pearson_euclidean | 0.7387 |
| spearman_euclidean | 0.7459 |
| pearson_dot | 0.6481 |
| spearman_dot | 0.6478 |
| pearson_max | 0.7387 |
| spearman_max | 0.7459 |
Semantic Similarity
- Dataset:
pritamdeka/stsb-assamese-translated-test - Evaluated with
EmbeddingSimilarityEvaluator
| Metric | Value |
|---|---|
| pearson_cosine | 0.6568 |
| spearman_cosine | 0.6622 |
| pearson_manhattan | 0.6675 |
| spearman_manhattan | 0.6722 |
| pearson_euclidean | 0.6682 |
| spearman_euclidean | 0.6727 |
| pearson_dot | 0.5692 |
| spearman_dot | 0.5709 |
| pearson_max | 0.6682 |
| spearman_max | 0.6727 |
Training Details
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy: stepsper_device_train_batch_size: 64per_device_eval_batch_size: 64num_train_epochs: 1warmup_ratio: 0.1fp16: Trueload_best_model_at_end: Truebatch_sampler: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir: Falsedo_predict: Falseeval_strategy: stepsprediction_loss_only: Trueper_device_train_batch_size: 64per_device_eval_batch_size: 64per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonelearning_rate: 5e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1.0num_train_epochs: 1max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.1warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Falsefp16: Truefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Trueignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torchoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Falsehub_always_push: Falsegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseeval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters:auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Nonedispatch_batches: Nonesplit_batches: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falsebatch_sampler: no_duplicatesmulti_dataset_batch_sampler: proportional
Training Logs
| Epoch | Step | Training Loss | loss | pritamdeka/stsb-assamese-translated-dev_spearman_cosine | pritamdeka/stsb-assamese-translated-test_spearman_cosine |
|---|---|---|---|---|---|
| 0 | 0 | - | - | 0.5489 | - |
| 0.0489 | 500 | 1.9387 | 1.7308 | 0.6808 | - |
| 0.0978 | 1000 | 1.0503 | 1.7373 | 0.6689 | - |
| 0.1467 | 1500 | 0.92 | 1.5838 | 0.6761 | - |
| 0.1956 | 2000 | 0.8754 | 1.4807 | 0.6518 | - |
| 0.2445 | 2500 | 0.7988 | 1.3797 | 0.6853 | - |
| 0.2933 | 3000 | 0.7606 | 1.3713 | 0.7108 | - |
| 0.3422 | 3500 | 0.7228 | 1.2510 | 0.6677 | - |
| 0.3911 | 4000 | 0.688 | 1.2374 | 0.6734 | - |
| 0.4400 | 4500 | 0.6992 | 1.2173 | 0.6891 | - |
| 0.4889 | 5000 | 0.6108 | 1.1638 | 0.7017 | - |
| 0.5378 | 5500 | 0.612 | 1.0815 | 0.7102 | - |
| 0.5867 | 6000 | 0.6259 | 1.0664 | 0.7202 | - |
| 0.6356 | 6500 | 0.5863 | 1.0464 | 0.7047 | - |
| 0.6845 | 7000 | 0.5941 | 1.0111 | 0.7101 | - |
| 0.7334 | 7500 | 0.5436 | 1.0023 | 0.7171 | - |
| 0.7822 | 8000 | 0.555 | 0.9633 | 0.7202 | - |
| 0.8311 | 8500 | 0.5466 | 0.9651 | 0.7279 | - |
| 0.8800 | 9000 | 0.5326 | 0.9611 | 0.7262 | - |
| 0.9289 | 9500 | 0.5055 | 0.9313 | 0.7276 | - |
| 0.9778 | 10000 | 0.4828 | 0.9172 | 0.7221 | - |
| 1.0 | 10227 | - | - | - | 0.6622 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.1
- Transformers: 4.42.4
- PyTorch: 2.3.1+cu121
- Accelerate: 0.32.1
- Datasets: 2.20.0
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 11
Model tree for pritamdeka/distilbert-base-multilingual-cased-indicxnli-random-negatives-v1
Evaluation results
- Pearson Cosine on pritamdeka/stsb assamese translated devself-reported0.717
- Spearman Cosine on pritamdeka/stsb assamese translated devself-reported0.722
- Pearson Manhattan on pritamdeka/stsb assamese translated devself-reported0.738
- Spearman Manhattan on pritamdeka/stsb assamese translated devself-reported0.745
- Pearson Euclidean on pritamdeka/stsb assamese translated devself-reported0.739
- Spearman Euclidean on pritamdeka/stsb assamese translated devself-reported0.746
- Pearson Dot on pritamdeka/stsb assamese translated devself-reported0.648
- Spearman Dot on pritamdeka/stsb assamese translated devself-reported0.648
- Pearson Max on pritamdeka/stsb assamese translated devself-reported0.739
- Spearman Max on pritamdeka/stsb assamese translated devself-reported0.746