|
--- |
|
license: apache-2.0 |
|
datasets: |
|
- garythung/trashnet |
|
language: |
|
- en |
|
base_model: |
|
- google/siglip2-base-patch16-224 |
|
pipeline_tag: image-classification |
|
library_name: transformers |
|
tags: |
|
- Trash |
|
- Classification |
|
- Net |
|
- biology |
|
- SigLIP2 |
|
--- |
|
|
|
 |
|
|
|
# **Trash-Net** |
|
|
|
> **Trash-Net** is an image classification vision-language encoder model fine-tuned from **google/siglip2-base-patch16-224** for a single-label classification task. It is designed to classify images of waste materials into different categories using the **SiglipForImageClassification** architecture. |
|
|
|
The model categorizes images into six classes: |
|
- **Class 0:** "cardboard" |
|
- **Class 1:** "glass" |
|
- **Class 2:** "metal" |
|
- **Class 3:** "paper" |
|
- **Class 4:** "plastic" |
|
- **Class 5:** "trash" |
|
|
|
```py |
|
Classification Report: |
|
precision recall f1-score support |
|
|
|
cardboard 0.9912 0.9739 0.9825 806 |
|
glass 0.9564 0.9641 0.9602 1002 |
|
metal 0.9523 0.9744 0.9632 820 |
|
paper 0.9520 0.9848 0.9681 1188 |
|
plastic 0.9835 0.9274 0.9546 964 |
|
trash 0.9127 0.9161 0.9144 274 |
|
|
|
accuracy 0.9626 5054 |
|
macro avg 0.9580 0.9568 0.9572 5054 |
|
weighted avg 0.9631 0.9626 0.9626 5054 |
|
``` |
|
|
|
 |
|
|
|
# **Run with Transformers🤗** |
|
|
|
```python |
|
!pip install -q transformers torch pillow gradio |
|
``` |
|
|
|
```python |
|
import gradio as gr |
|
from transformers import AutoImageProcessor |
|
from transformers import SiglipForImageClassification |
|
from transformers.image_utils import load_image |
|
from PIL import Image |
|
import torch |
|
|
|
# Load model and processor |
|
model_name = "prithivMLmods/Trash-Net" |
|
model = SiglipForImageClassification.from_pretrained(model_name) |
|
processor = AutoImageProcessor.from_pretrained(model_name) |
|
|
|
def trash_classification(image): |
|
"""Predicts the category of waste material in the image.""" |
|
image = Image.fromarray(image).convert("RGB") |
|
inputs = processor(images=image, return_tensors="pt") |
|
|
|
with torch.no_grad(): |
|
outputs = model(**inputs) |
|
logits = outputs.logits |
|
probs = torch.nn.functional.softmax(logits, dim=1).squeeze().tolist() |
|
|
|
labels = { |
|
"0": "cardboard", |
|
"1": "glass", |
|
"2": "metal", |
|
"3": "paper", |
|
"4": "plastic", |
|
"5": "trash" |
|
} |
|
predictions = {labels[str(i)]: round(probs[i], 3) for i in range(len(probs))} |
|
|
|
return predictions |
|
|
|
# Create Gradio interface |
|
iface = gr.Interface( |
|
fn=trash_classification, |
|
inputs=gr.Image(type="numpy"), |
|
outputs=gr.Label(label="Prediction Scores"), |
|
title="Trash Classification", |
|
description="Upload an image to classify the type of waste material." |
|
) |
|
|
|
# Launch the app |
|
if __name__ == "__main__": |
|
iface.launch() |
|
``` |
|
|
|
# **Intended Use:** |
|
|
|
The **Trash-Net** model is designed to classify waste materials into different categories. Potential use cases include: |
|
|
|
- **Waste Management:** Assisting in automated waste sorting and recycling. |
|
- **Environmental Monitoring:** Identifying and categorizing waste in public spaces. |
|
- **Educational Purposes:** Teaching waste classification and sustainability. |
|
- **Smart Cities:** Enhancing waste disposal systems through AI-driven classification. |