|
--- |
|
library_name: transformers |
|
tags: |
|
- torchao |
|
- code |
|
- math |
|
- chat |
|
- conversational |
|
language: |
|
- multilingual |
|
license: apache-2.0 |
|
license_link: https://huggingface.co/Qwen/Qwen3-8B/blob/main/LICENSE |
|
pipeline_tag: text-generation |
|
base_model: |
|
- Qwen/Qwen3-8B |
|
--- |
|
|
|
[Qwen3-8B](https://huggingface.co/Qwen/Qwen3-8B) quantized with [torchao](https://huggingface.co/docs/transformers/main/en/quantization/torchao) int4 weight only quantization, using [hqq](https://mobiusml.github.io/hqq_blog/) algorithm for improved accuracy, by PyTorch team. |
|
Use it directly or serve using [vLLM](https://docs.vllm.ai/en/latest/) for 62% VRAM reduction (6.27 GB needed) and 1.2x speedup on A100 GPUs. |
|
|
|
# Inference with vLLM |
|
Install vllm nightly and torchao nightly to get some recent changes: |
|
``` |
|
pip install vllm --pre --extra-index-url https://wheels.vllm.ai/nightly |
|
pip install torchao |
|
``` |
|
|
|
## Serving |
|
Then we can serve with the following command: |
|
```Shell |
|
# Server |
|
export MODEL=pytorch/Qwen3-8B-INT4 |
|
VLLM_DISABLE_COMPILE_CACHE=1 vllm serve $MODEL --tokenizer $MODEL -O3 |
|
``` |
|
|
|
```Shell |
|
# Client |
|
curl http://localhost:8000/v1/chat/completions -H "Content-Type: application/json" -d '{ |
|
"model": "pytorch/Qwen3-8B-INT4", |
|
"messages": [ |
|
{"role": "user", "content": "Give me a short introduction to large language models."} |
|
], |
|
"temperature": 0.6, |
|
"top_p": 0.95, |
|
"top_k": 20, |
|
"max_tokens": 32768 |
|
}' |
|
``` |
|
|
|
Note: please use `VLLM_DISABLE_COMPILE_CACHE=1` to disable compile cache when running this code, e.g. `VLLM_DISABLE_COMPILE_CACHE=1 python example.py`, since there are some issues with the composability of compile in vLLM and torchao, |
|
this is expected be resolved in pytorch 2.8. |
|
|
|
# Inference with Transformers |
|
|
|
Install the required packages: |
|
```Shell |
|
pip install git+https://github.com/huggingface/transformers@main |
|
pip install torchao |
|
pip install torch |
|
pip install accelerate |
|
``` |
|
|
|
Example: |
|
```Py |
|
import torch |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
|
|
model_name = "pytorch/Qwen3-8B-INT4" |
|
|
|
# load the tokenizer and the model |
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_name, |
|
torch_dtype="auto", |
|
device_map="auto" |
|
) |
|
|
|
# prepare the model input |
|
prompt = "Give me a short introduction to large language model." |
|
messages = [ |
|
{"role": "user", "content": prompt} |
|
] |
|
text = tokenizer.apply_chat_template( |
|
messages, |
|
tokenize=False, |
|
add_generation_prompt=True, |
|
enable_thinking=True # Switches between thinking and non-thinking modes. Default is True. |
|
) |
|
model_inputs = tokenizer([text], return_tensors="pt").to(model.device) |
|
|
|
# conduct text completion |
|
generated_ids = model.generate( |
|
**model_inputs, |
|
max_new_tokens=32768 |
|
) |
|
output_ids = generated_ids[0][len(model_inputs.input_ids[0]):].tolist() |
|
|
|
# parsing thinking content |
|
try: |
|
# rindex finding 151668 (</think>) |
|
index = len(output_ids) - output_ids[::-1].index(151668) |
|
except ValueError: |
|
index = 0 |
|
|
|
thinking_content = tokenizer.decode(output_ids[:index], skip_special_tokens=True).strip("\n") |
|
content = tokenizer.decode(output_ids[index:], skip_special_tokens=True).strip("\n") |
|
|
|
print("thinking content:", thinking_content) |
|
print("content:", content) |
|
``` |
|
|
|
# Quantization Recipe |
|
|
|
Install the required packages: |
|
```Shell |
|
pip install git+https://github.com/huggingface/transformers@main |
|
pip install --pre torchao --index-url https://download.pytorch.org/whl/nightly/cu126 |
|
pip install torch |
|
pip install accelerate |
|
``` |
|
|
|
Use the following code to get the quantized model: |
|
```Py |
|
import torch |
|
from transformers import AutoModelForCausalLM, AutoTokenizer, TorchAoConfig |
|
|
|
model_id = "Qwen/Qwen3-8B" |
|
|
|
from torchao.quantization import Int4WeightOnlyConfig |
|
quant_config = Int4WeightOnlyConfig(group_size=128, use_hqq=True) |
|
quantization_config = TorchAoConfig(quant_type=quant_config) |
|
quantized_model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto", torch_dtype=torch.bfloat16, quantization_config=quantization_config) |
|
tokenizer = AutoTokenizer.from_pretrained(model_id) |
|
|
|
# Push to hub |
|
USER_ID = "YOUR_USER_ID" |
|
MODEL_NAME = model_id.split("/")[-1] |
|
save_to = f"{USER_ID}/{MODEL_NAME}-INT4" |
|
quantized_model.push_to_hub(save_to, safe_serialization=False) |
|
tokenizer.push_to_hub(save_to) |
|
|
|
# Manual Testing |
|
prompt = "Hey, are you conscious? Can you talk to me?" |
|
messages = [ |
|
{ |
|
"role": "system", |
|
"content": "", |
|
}, |
|
{"role": "user", "content": prompt}, |
|
] |
|
templated_prompt = tokenizer.apply_chat_template( |
|
messages, |
|
tokenize=False, |
|
add_generation_prompt=True, |
|
) |
|
print("Prompt:", prompt) |
|
print("Templated prompt:", templated_prompt) |
|
inputs = tokenizer( |
|
templated_prompt, |
|
return_tensors="pt", |
|
).to("cuda") |
|
generated_ids = quantized_model.generate(**inputs, max_new_tokens=128) |
|
output_text = tokenizer.batch_decode( |
|
generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False |
|
) |
|
print("Response:", output_text[0][len(prompt):]) |
|
``` |
|
|
|
Note: to `push_to_hub` you need to run |
|
```Shell |
|
pip install -U "huggingface_hub[cli]" |
|
huggingface-cli login |
|
``` |
|
and use a token with write access, from https://huggingface.co/settings/tokens |
|
|
|
# Model Quality |
|
We rely on [lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness) to evaluate the quality of the quantized model. |
|
|
|
| Benchmark | | | |
|
|----------------------------------|----------------|---------------------------| |
|
| | Qwen3-8B | Qwen3-8B-INT4 | |
|
| **General** | | | |
|
| mmlu | 73.04 | 70.4 | |
|
| mmlu_pro | 53.81 | 52.79 | |
|
| bbh | 79.33 | 74.92 | |
|
| **Multilingual** | | | |
|
| mgsm_en_cot_en | 39.6 | 33.2 | |
|
| m_mmlu (avg) | 57.17 | 54.06 | |
|
| **Math** | | | |
|
| gpqa_main_zeroshot | 35.71 | 32.14 | |
|
| gsm8k | 87.79 | 86.28 | |
|
| leaderboard_math_hard (v3) | 53.7 | 46.83 | |
|
| **Overall** | 60.02 | 56.33 | |
|
|
|
<details> |
|
<summary> Reproduce Model Quality Results </summary> |
|
|
|
Need to install lm-eval from source: |
|
https://github.com/EleutherAI/lm-evaluation-harness#install |
|
|
|
## baseline |
|
```Shell |
|
lm_eval --model hf --model_args pretrained=microsoft/Phi-4-mini-instruct --tasks mmlu --device cuda:0 --batch_size 8 |
|
``` |
|
|
|
## int4 weight only quantization with hqq (INT4) |
|
```Shell |
|
export MODEL=pytorch/Qwen3-8B-INT4 |
|
# or |
|
# export MODEL=Qwen/Qwen3-8B |
|
lm_eval --model hf --model_args pretrained=$MODEL --tasks mmlu --device cuda:0 --batch_size 8 |
|
``` |
|
</details> |
|
|
|
|
|
|
|
# Peak Memory Usage |
|
|
|
## Results |
|
|
|
| Benchmark | | | |
|
|------------------|----------------|--------------------------------| |
|
| | Qwen3-8B | Qwen3-8B-INT4 | |
|
| Peak Memory (GB) | 16.47 | 6.27 (62% reduction) | |
|
|
|
|
|
|
|
<details> |
|
<summary> Reproduce Peak Memory Usage Results </summary> |
|
|
|
We can use the following code to get a sense of peak memory usage during inference: |
|
|
|
```Py |
|
import torch |
|
from transformers import AutoModelForCausalLM, AutoTokenizer, TorchAoConfig |
|
|
|
# use "Qwen/Qwen3-8B" or "pytorch/Qwen3-8B-INT4" |
|
model_id = "pytorch/Qwen3-8B-INT4" |
|
quantized_model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto", torch_dtype=torch.bfloat16) |
|
tokenizer = AutoTokenizer.from_pretrained(model_id) |
|
|
|
torch.cuda.reset_peak_memory_stats() |
|
|
|
prompt = "Hey, are you conscious? Can you talk to me?" |
|
messages = [ |
|
{ |
|
"role": "system", |
|
"content": "", |
|
}, |
|
{"role": "user", "content": prompt}, |
|
] |
|
templated_prompt = tokenizer.apply_chat_template( |
|
messages, |
|
tokenize=False, |
|
add_generation_prompt=True, |
|
) |
|
print("Prompt:", prompt) |
|
print("Templated prompt:", templated_prompt) |
|
inputs = tokenizer( |
|
templated_prompt, |
|
return_tensors="pt", |
|
).to("cuda") |
|
generated_ids = quantized_model.generate(**inputs, max_new_tokens=128) |
|
output_text = tokenizer.batch_decode( |
|
generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False |
|
) |
|
print("Response:", output_text[0][len(prompt):]) |
|
|
|
mem = torch.cuda.max_memory_reserved() / 1e9 |
|
print(f"Peak Memory Usage: {mem:.02f} GB") |
|
``` |
|
|
|
</details> |
|
|
|
|
|
|
|
# Model Performance |
|
|
|
Our INT4 model is only optimized for batch size 1, so expect some slowdown with larger batch sizes, we expect this to be used in local server deployment for single or a few users where the decode tokens per second will matters more than the time to first token. |
|
|
|
## Results (A100 machine) |
|
| Benchmark (Latency) | | | |
|
|----------------------------------|----------------|--------------------------| |
|
| | Qwen3-8B | Qwen3-8B-INT4 | |
|
| latency (batch_size=1) | 3.52s | 2.84s (1.24x speedup) | |
|
|
|
Int4 weight only is optimized for batch size 1 and short input and output token length, please stay tuned for models optimized for larger batch sizes or longer token length. |
|
|
|
|
|
|
|
<details> |
|
<summary> Reproduce Model Performance Results </summary> |
|
|
|
## Setup |
|
|
|
Get vllm source code: |
|
```Shell |
|
git clone git@github.com:vllm-project/vllm.git |
|
``` |
|
|
|
Install vllm |
|
``` |
|
VLLM_USE_PRECOMPILED=1 pip install --editable . |
|
``` |
|
|
|
Run the benchmarks under `vllm` root folder: |
|
|
|
## benchmark_latency |
|
|
|
### baseline |
|
```Shell |
|
export MODEL=Qwen/Qwen3-8B |
|
python benchmarks/benchmark_latency.py --input-len 256 --output-len 256 --model $MODEL --batch-size 1 |
|
``` |
|
|
|
### INT4 |
|
```Shell |
|
export MODEL=pytorch/Qwen3-8B-INT4 |
|
VLLM_DISABLE_COMPILE_CACHE=1 python benchmarks/benchmark_latency.py --input-len 256 --output-len 256 --model $MODEL --batch-size 1 |
|
``` |
|
|
|
## benchmark_serving |
|
|
|
We benchmarked the throughput in a serving environment. |
|
|
|
Download sharegpt dataset: |
|
|
|
```Shell |
|
wget https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/resolve/main/ShareGPT_V3_unfiltered_cleaned_split.json |
|
``` |
|
|
|
|
|
|
|
Other datasets can be found in: https://github.com/vllm-project/vllm/tree/main/benchmarks |
|
|
|
Note: you can change the number of prompts to be benchmarked with `--num-prompts` argument for `benchmark_serving` script. |
|
|
|
### baseline |
|
Server: |
|
```Shell |
|
export MODEL=Qwen/Qwen3-8B |
|
vllm serve $MODEL --tokenizer $MODEL -O3 |
|
``` |
|
|
|
Client: |
|
```Shell |
|
export MODEL=Qwen/Qwen3-8B |
|
python benchmarks/benchmark_serving.py --backend vllm --dataset-name sharegpt --tokenizer $MODEL --dataset-path ./ShareGPT_V3_unfiltered_cleaned_split.json --model $MODEL --num-prompts 1 |
|
``` |
|
|
|
### INT4 |
|
Server: |
|
```Shell |
|
export MODEL=pytorch/Qwen3-8B-INT4 |
|
VLLM_DISABLE_COMPILE_CACHE=1 vllm serve $MODEL --tokenizer $MODEL -O3 --pt-load-map-location cuda:0 |
|
``` |
|
|
|
Client: |
|
```Shell |
|
export MODEL=pytorch/Qwen3-8B-INT4 |
|
python benchmarks/benchmark_serving.py --backend vllm --dataset-name sharegpt --tokenizer $MODEL --dataset-path ./ShareGPT_V3_unfiltered_cleaned_split.json --model $MODEL --num-prompts 1 |
|
``` |
|
</details> |
|
|
|
# Paper: TorchAO: PyTorch-Native Training-to-Serving Model Optimization |
|
The model's quantization is powered by **TorchAO**, a framework presented in the paper [TorchAO: PyTorch-Native Training-to-Serving Model Optimization](https://huggingface.co/papers/2507.16099). |
|
|
|
**Abstract:** We present TorchAO, a PyTorch-native model optimization framework leveraging quantization and sparsity to provide an end-to-end, training-to-serving workflow for AI models. TorchAO supports a variety of popular model optimization techniques, including FP8 quantized training, quantization-aware training (QAT), post-training quantization (PTQ), and 2:4 sparsity, and leverages a novel tensor subclass abstraction to represent a variety of widely-used, backend agnostic low precision data types, including INT4, INT8, FP8, MXFP4, MXFP6, and MXFP8. TorchAO integrates closely with the broader ecosystem at each step of the model optimization pipeline, from pre-training (TorchTitan) to fine-tuning (TorchTune, Axolotl) to serving (HuggingFace, vLLM, SGLang, ExecuTorch), connecting an otherwise fragmented space in a single, unified workflow. TorchAO has enabled recent launches of the quantized Llama 3.2 1B/3B and LlamaGuard3-8B models and is open-source at this https URL . |
|
|
|
# Resources |
|
* **Official TorchAO GitHub Repository:** [https://github.com/pytorch/ao](https://github.com/pytorch/ao) |
|
* **TorchAO Documentation:** [https://docs.pytorch.org/ao/stable/index.html](https://docs.pytorch.org/ao/stable/index.html) |
|
|
|
|
|
# Disclaimer |
|
PyTorch has not performed safety evaluations or red teamed the quantized models. Performance characteristics, outputs, and behaviors may differ from the original models. Users are solely responsible for selecting appropriate use cases, evaluating and mitigating for accuracy, safety, and fairness, ensuring security, and complying with all applicable laws and regulations. |
|
|
|
Nothing contained in this Model Card should be interpreted as or deemed a restriction or modification to the licenses the models are released under, including any limitations of liability or disclaimers of warranties provided therein. |