FG-CLIP 2: A Bilingual Fine-grained Vision-language Alignment Model

Code: https://github.com/360CVGroup/FG-CLIP

FG-CLIP 2 is the foundation model for fine-grained vision-language understanding in both English and Chinese. Across 29 datasets and 8 diverse tasks, it consistently surpasses recent strong baselines such as SigLIP 2 and MetaCLIP 2, achieving the best reported performance to date in both languages.

FG-CLIP 2: A Bilingual Fine-grained Vision-language Alignment Model
Chunyu Xie*, Bin Wang*, Fanjing Kong, Jincheng Li, Dawei Liang, Ji Ao, Dawei Leng†, Yuhui Yin(*Equal Contribution, ✝Corresponding Author)
arXiv HF-model HF-data API+MCP

FG-CLIP: Fine-Grained Visual and Textual Alignment (code branch: v1.0)
Chunyu Xie*, Bin Wang*, Fanjing Kong, Jincheng Li, Dawei Liang, Gengshen Zhang, Dawei Leng†, Yuhui Yin (*Equal Contribution, ✝Corresponding Author)
arXiv ICML HF-model HF-data DeepWiki

Quick Start 🤗

Load Model

import torch
from PIL import Image
from transformers import (
    AutoImageProcessor,
    AutoTokenizer,
    AutoModelForCausalLM,
)


model_root = "qihoo360/fg-clip2-so400m"
model = AutoModelForCausalLM.from_pretrained(model_root,trust_remote_code=True).cuda()

device = model.device

tokenizer = AutoTokenizer.from_pretrained(model_root)
image_processor = AutoImageProcessor.from_pretrained(model_root)

Retrieval

def determine_max_value(image):

    w,h = image.size
    max_val = (w//16)*(h//16)

    if max_val > 784:
        return 1024
    elif max_val > 576:
        return 784
    elif max_val > 256:
        return 576
    elif max_val > 128:
        return 256
    else:
        return 128

img_root = "cat_dfclor.jpg"
image = Image.open(img_root).convert("RGB")

image_input = image_processor(images=image, max_num_patches=determine_max_value(image), return_tensors="pt").to(device)

# NOTE Short captions: max_length=64

captions = ["a photo of two cats", "a photo of a cat"]
captions = [caption.lower() for caption in captions]

caption_input = tokenizer(captions, padding="max_length", max_length=64, truncation=True, return_tensors="pt").to(device)


with torch.no_grad():
  image_feature = model.get_image_features(**image_input)
  text_feature = model.get_text_features(**caption_input)
  image_feature = image_feature / image_feature.norm(p=2, dim=-1, keepdim=True)
  text_feature = text_feature / text_feature.norm(p=2, dim=-1, keepdim=True)

logits_per_image = image_feature @ text_feature.T
logit_scale, logit_bias = model.logit_scale.to(text_feature.device), model.logit_bias.to(text_feature.device)
logits_per_image = logits_per_image * logit_scale.exp() + logit_bias
probs = torch.sigmoid(logits_per_image)
# [[0.8179, 0.0103]]
print(probs)

Dense feature effect display


import math
import matplotlib
matplotlib.use('Agg') 
import matplotlib.pyplot as plt


img_root = "cat_dfclor.jpg"
image = Image.open(img_root).convert("RGB")
image = resize_short_edge(image,target_size=2048)

image_input = image_processor(images=image, max_num_patches=16384, return_tensors="pt").to(device)
captions = ["电脑","黑猫","窗户","window","white cat","book"]

with torch.no_grad():
    dense_image_feature = model.get_image_dense_feature(**image_input)
    
    spatial_values = image_input["spatial_shapes"][0]
    real_h = spatial_values[0].item()
    real_w = spatial_values[1].item()
    real_pixel_tokens_num = real_w*real_h
    dense_image_feature = dense_image_feature[0][:real_pixel_tokens_num]
    

    captions = [caption.lower() for caption in captions]
    caption_input = tokenizer(captions, padding="max_length", max_length=64, truncation=True, return_tensors="pt").to(device)

    text_feature = model.get_text_features(**caption_input, walk_type="box")
    text_feature = text_feature / text_feature.norm(p=2, dim=-1, keepdim=True)
    dense_image_feature = dense_image_feature / dense_image_feature.norm(p=2, dim=-1, keepdim=True)

similarity = dense_image_feature @ text_feature.T
similarity = similarity.cpu()


num_classes = len(captions)
cols = 3
rows = (num_classes + cols - 1) // cols


aspect_ratio = real_w / real_h 

fig_width_inch = 3 * cols        
fig_height_inch = fig_width_inch / aspect_ratio * rows / cols  

fig, axes = plt.subplots(rows, cols, figsize=(fig_width_inch, fig_height_inch))
fig.subplots_adjust(wspace=0.01, hspace=0.01)

if num_classes == 1:
    axes = [axes]
else:
    axes = axes.flatten()

for cls_index in range(num_classes):
    similarity_map = similarity[:, cls_index].cpu().numpy()
    show_image = similarity_map.reshape((real_h, real_w))

    ax = axes[cls_index]
    ax.imshow(show_image, cmap='viridis', aspect='equal')  
    ax.set_xticks([])
    ax.set_yticks([])
    ax.axis('off')


for idx in range(num_classes, len(axes)):
    axes[idx].axis('off')

savename = "FGCLIP2_dfcolor_cat_all_2K.png"
plt.savefig(savename, dpi=150, bbox_inches='tight', pad_inches=0.05)
plt.close()

Citation

If you find FG-CLIP 2 useful for your research and applications, please cite using this BibTeX:

@article{xie2025fg2,
  title={FG-CLIP 2: A Bilingual Fine-grained Vision-language Alignment Model},
  author={Xie, Chunyu and Wang, Bin and Kong, Fanjing and Li, Jincheng and Liang, Dawei and Ao, Ji and Leng, Dawei and Yin, Yuhui},
  journal={arXiv preprint arXiv:2510.10921},
  year={2025}
}
@article{xie2025fg,
  title={FG-CLIP: Fine-Grained Visual and Textual Alignment},
  author={Xie, Chunyu and Wang, Bin and Kong, Fanjing and Li, Jincheng and Liang, Dawei and Zhang, Gengshen and Leng, Dawei and Yin, Yuhui},
  journal={arXiv preprint arXiv:2505.05071},
  year={2025}
}

License

This project utilizes certain datasets and checkpoints that are subject to their respective original licenses. Users must comply with all terms and conditions of these original licenses. The content of this project itself is licensed under the Apache license 2.0.

Downloads last month
26
Safetensors
Model size
1B params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Collection including qihoo360/fg-clip2-so400m