OpenAI-Clip: Optimized for Qualcomm Devices
Contrastive Language-Image Pre-Training (CLIP) uses a ViT like transformer to get visual features and a causal language model to get the text features. Both the text and visual features can then be used for a variety of zero-shot learning tasks.
This is based on the implementation of OpenAI-Clip found here. This repository contains pre-exported model files optimized for Qualcomm® devices. You can use the Qualcomm® AI Hub Models library to export with custom configurations. More details on model performance across various devices, can be found here.
Qualcomm AI Hub Models uses Qualcomm AI Hub Workbench to compile, profile, and evaluate this model. Sign up to run these models on a hosted Qualcomm® device.
Getting Started
There are two ways to deploy this model on your device:
Option 1: Download Pre-Exported Models
Below are pre-exported model assets ready for deployment.
| Runtime | Precision | Chipset | SDK Versions | Download |
|---|---|---|---|---|
| ONNX | float | Universal | QAIRT 2.37, ONNX Runtime 1.23.0 | Download |
| QNN_DLC | float | Universal | QAIRT 2.42 | Download |
| TFLITE | float | Universal | QAIRT 2.42, TFLite 2.17.0 | Download |
For more device-specific assets and performance metrics, visit OpenAI-Clip on Qualcomm® AI Hub.
Option 2: Export with Custom Configurations
Use the Qualcomm® AI Hub Models Python library to compile and export the model with your own:
- Custom weights (e.g., fine-tuned checkpoints)
- Custom input shapes
- Target device and runtime configurations
This option is ideal if you need to customize the model beyond the default configuration provided here.
See our repository for OpenAI-Clip on GitHub for usage instructions.
Model Details
Model Type: Model_use_case.image_classification
Model Stats:
- Model checkpoint: ViT-B/16
- Image input resolution: 224x224
- Text context length: 77
- Number of parameters: 150M
- Model size (float): 571 MB
Performance Summary
| Model | Runtime | Precision | Chipset | Inference Time (ms) | Peak Memory Range (MB) | Primary Compute Unit |
|---|---|---|---|---|---|---|
| OpenAI-Clip | ONNX | float | Snapdragon® X Elite | 22.459 ms | 294 - 294 MB | NPU |
| OpenAI-Clip | ONNX | float | Snapdragon® 8 Gen 3 Mobile | 15.269 ms | 0 - 796 MB | NPU |
| OpenAI-Clip | ONNX | float | Qualcomm® QCS8550 (Proxy) | 22.212 ms | 0 - 323 MB | NPU |
| OpenAI-Clip | ONNX | float | Qualcomm® QCS9075 | 25.758 ms | 0 - 4 MB | NPU |
| OpenAI-Clip | ONNX | float | Snapdragon® 8 Elite For Galaxy Mobile | 12.318 ms | 1 - 713 MB | NPU |
| OpenAI-Clip | ONNX | float | Snapdragon® 8 Elite Gen 5 Mobile | 10.095 ms | 1 - 661 MB | NPU |
| OpenAI-Clip | QNN_DLC | float | Snapdragon® X Elite | 18.808 ms | 1 - 1 MB | NPU |
| OpenAI-Clip | QNN_DLC | float | Snapdragon® 8 Gen 3 Mobile | 12.624 ms | 0 - 550 MB | NPU |
| OpenAI-Clip | QNN_DLC | float | Qualcomm® QCS8275 (Proxy) | 55.883 ms | 1 - 507 MB | NPU |
| OpenAI-Clip | QNN_DLC | float | Qualcomm® QCS8550 (Proxy) | 17.922 ms | 1 - 593 MB | NPU |
| OpenAI-Clip | QNN_DLC | float | Qualcomm® SA8775P | 20.876 ms | 1 - 504 MB | NPU |
| OpenAI-Clip | QNN_DLC | float | Qualcomm® QCS9075 | 20.902 ms | 1 - 3 MB | NPU |
| OpenAI-Clip | QNN_DLC | float | Qualcomm® QCS8450 (Proxy) | 21.094 ms | 0 - 501 MB | NPU |
| OpenAI-Clip | QNN_DLC | float | Qualcomm® SA7255P | 55.883 ms | 1 - 507 MB | NPU |
| OpenAI-Clip | QNN_DLC | float | Qualcomm® SA8295P | 22.195 ms | 0 - 492 MB | NPU |
| OpenAI-Clip | QNN_DLC | float | Snapdragon® 8 Elite For Galaxy Mobile | 10.588 ms | 1 - 515 MB | NPU |
| OpenAI-Clip | QNN_DLC | float | Snapdragon® 8 Elite Gen 5 Mobile | 8.462 ms | 0 - 485 MB | NPU |
| OpenAI-Clip | TFLITE | float | Snapdragon® 8 Gen 3 Mobile | 11.008 ms | 0 - 562 MB | NPU |
| OpenAI-Clip | TFLITE | float | Qualcomm® QCS8275 (Proxy) | 52.168 ms | 0 - 512 MB | NPU |
| OpenAI-Clip | TFLITE | float | Qualcomm® QCS8550 (Proxy) | 15.689 ms | 0 - 4 MB | NPU |
| OpenAI-Clip | TFLITE | float | Qualcomm® SA8775P | 18.638 ms | 0 - 509 MB | NPU |
| OpenAI-Clip | TFLITE | float | Qualcomm® QCS9075 | 20.357 ms | 0 - 294 MB | NPU |
| OpenAI-Clip | TFLITE | float | Qualcomm® QCS8450 (Proxy) | 20.361 ms | 0 - 503 MB | NPU |
| OpenAI-Clip | TFLITE | float | Qualcomm® SA7255P | 52.168 ms | 0 - 512 MB | NPU |
| OpenAI-Clip | TFLITE | float | Qualcomm® SA8295P | 21.567 ms | 0 - 495 MB | NPU |
| OpenAI-Clip | TFLITE | float | Snapdragon® 8 Elite For Galaxy Mobile | 9.059 ms | 0 - 526 MB | NPU |
| OpenAI-Clip | TFLITE | float | Snapdragon® 8 Elite Gen 5 Mobile | 7.023 ms | 0 - 497 MB | NPU |
License
- The license for the original implementation of OpenAI-Clip can be found here.
References
Community
- Join our AI Hub Slack community to collaborate, post questions and learn more about on-device AI.
- For questions or feedback please reach out to us.
