Stable-Diffusion-v2.1: Optimized for Mobile Deployment

State-of-the-art generative AI model used to generate detailed images conditioned on text descriptions

Generates high resolution images from text prompts using a latent diffusion model. This model uses CLIP ViT-L/14 as text encoder, U-Net based latent denoising, and VAE based decoder to generate the final image.

This model is an implementation of Stable-Diffusion-v2.1 found here.

This repository provides scripts to run Stable-Diffusion-v2.1 on Qualcomm® devices. More details on model performance across various devices, can be found here.

Model Details

  • Model Type: Model_use_case.image_generation
  • Model Stats:
    • Input: Text prompt to generate image
Model Precision Device Chipset Target Runtime Inference Time (ms) Peak Memory Range (MB) Primary Compute Unit Target Model
text_encoder w8a16 QCS8275 (Proxy) Qualcomm® QCS8275 (Proxy) QNN_CONTEXT_BINARY 18.499 ms 0 - 8 MB NPU Use Export Script
text_encoder w8a16 QCS8550 (Proxy) Qualcomm® QCS8550 (Proxy) QNN_CONTEXT_BINARY 8.205 ms 0 - 3 MB NPU Use Export Script
text_encoder w8a16 QCS9075 (Proxy) Qualcomm® QCS9075 (Proxy) QNN_CONTEXT_BINARY 8.377 ms 0 - 9 MB NPU Use Export Script
text_encoder w8a16 SA7255P ADP Qualcomm® SA7255P QNN_CONTEXT_BINARY 18.499 ms 0 - 8 MB NPU Use Export Script
text_encoder w8a16 SA8255 (Proxy) Qualcomm® SA8255P (Proxy) QNN_CONTEXT_BINARY 8.366 ms 0 - 2 MB NPU Use Export Script
text_encoder w8a16 SA8650 (Proxy) Qualcomm® SA8650P (Proxy) QNN_CONTEXT_BINARY 8.216 ms 0 - 2 MB NPU Use Export Script
text_encoder w8a16 SA8775P ADP Qualcomm® SA8775P QNN_CONTEXT_BINARY 8.377 ms 0 - 9 MB NPU Use Export Script
text_encoder w8a16 Samsung Galaxy S23 Snapdragon® 8 Gen 2 Mobile QNN_CONTEXT_BINARY 8.285 ms 0 - 7 MB NPU Use Export Script
text_encoder w8a16 Samsung Galaxy S23 Snapdragon® 8 Gen 2 Mobile PRECOMPILED_QNN_ONNX 8.141 ms 0 - 387 MB NPU Use Export Script
text_encoder w8a16 Samsung Galaxy S24 Snapdragon® 8 Gen 3 Mobile QNN_CONTEXT_BINARY 5.601 ms 0 - 18 MB NPU Use Export Script
text_encoder w8a16 Samsung Galaxy S24 Snapdragon® 8 Gen 3 Mobile PRECOMPILED_QNN_ONNX 5.404 ms 0 - 19 MB NPU Use Export Script
text_encoder w8a16 Snapdragon 8 Elite QRD Snapdragon® 8 Elite Mobile QNN_CONTEXT_BINARY 4.56 ms 0 - 15 MB NPU Use Export Script
text_encoder w8a16 Snapdragon 8 Elite QRD Snapdragon® 8 Elite Mobile PRECOMPILED_QNN_ONNX 5.312 ms 0 - 14 MB NPU Use Export Script
text_encoder w8a16 Snapdragon X Elite CRD Snapdragon® X Elite QNN_CONTEXT_BINARY 8.652 ms 0 - 0 MB NPU Use Export Script
text_encoder w8a16 Snapdragon X Elite CRD Snapdragon® X Elite PRECOMPILED_QNN_ONNX 8.311 ms 378 - 378 MB NPU Use Export Script
unet w8a16 QCS8275 (Proxy) Qualcomm® QCS8275 (Proxy) QNN_CONTEXT_BINARY 232.583 ms 0 - 8 MB NPU Use Export Script
unet w8a16 QCS8550 (Proxy) Qualcomm® QCS8550 (Proxy) QNN_CONTEXT_BINARY 93.286 ms 0 - 2 MB NPU Use Export Script
unet w8a16 QCS9075 (Proxy) Qualcomm® QCS9075 (Proxy) QNN_CONTEXT_BINARY 87.78 ms 0 - 9 MB NPU Use Export Script
unet w8a16 SA7255P ADP Qualcomm® SA7255P QNN_CONTEXT_BINARY 232.583 ms 0 - 8 MB NPU Use Export Script
unet w8a16 SA8255 (Proxy) Qualcomm® SA8255P (Proxy) QNN_CONTEXT_BINARY 93.785 ms 0 - 3 MB NPU Use Export Script
unet w8a16 SA8650 (Proxy) Qualcomm® SA8650P (Proxy) QNN_CONTEXT_BINARY 93.873 ms 0 - 3 MB NPU Use Export Script
unet w8a16 SA8775P ADP Qualcomm® SA8775P QNN_CONTEXT_BINARY 87.78 ms 0 - 9 MB NPU Use Export Script
unet w8a16 Samsung Galaxy S23 Snapdragon® 8 Gen 2 Mobile QNN_CONTEXT_BINARY 93.717 ms 0 - 7 MB NPU Use Export Script
unet w8a16 Samsung Galaxy S23 Snapdragon® 8 Gen 2 Mobile PRECOMPILED_QNN_ONNX 95.033 ms 0 - 898 MB NPU Use Export Script
unet w8a16 Samsung Galaxy S24 Snapdragon® 8 Gen 3 Mobile QNN_CONTEXT_BINARY 66.248 ms 0 - 18 MB NPU Use Export Script
unet w8a16 Samsung Galaxy S24 Snapdragon® 8 Gen 3 Mobile PRECOMPILED_QNN_ONNX 67.516 ms 0 - 14 MB NPU Use Export Script
unet w8a16 Snapdragon 8 Elite QRD Snapdragon® 8 Elite Mobile QNN_CONTEXT_BINARY 58.258 ms 0 - 14 MB NPU Use Export Script
unet w8a16 Snapdragon 8 Elite QRD Snapdragon® 8 Elite Mobile PRECOMPILED_QNN_ONNX 58.617 ms 0 - 19 MB NPU Use Export Script
unet w8a16 Snapdragon X Elite CRD Snapdragon® X Elite QNN_CONTEXT_BINARY 95.326 ms 0 - 0 MB NPU Use Export Script
unet w8a16 Snapdragon X Elite CRD Snapdragon® X Elite PRECOMPILED_QNN_ONNX 96.279 ms 843 - 843 MB NPU Use Export Script
vae w8a16 QCS8275 (Proxy) Qualcomm® QCS8275 (Proxy) QNN_CONTEXT_BINARY 719.113 ms 0 - 9 MB NPU Use Export Script
vae w8a16 QCS8550 (Proxy) Qualcomm® QCS8550 (Proxy) QNN_CONTEXT_BINARY 270.059 ms 1 - 3 MB NPU Use Export Script
vae w8a16 QCS9075 (Proxy) Qualcomm® QCS9075 (Proxy) QNN_CONTEXT_BINARY 249.046 ms 0 - 10 MB NPU Use Export Script
vae w8a16 SA7255P ADP Qualcomm® SA7255P QNN_CONTEXT_BINARY 719.113 ms 0 - 9 MB NPU Use Export Script
vae w8a16 SA8255 (Proxy) Qualcomm® SA8255P (Proxy) QNN_CONTEXT_BINARY 271.52 ms 0 - 3 MB NPU Use Export Script
vae w8a16 SA8650 (Proxy) Qualcomm® SA8650P (Proxy) QNN_CONTEXT_BINARY 271.625 ms 0 - 4 MB NPU Use Export Script
vae w8a16 SA8775P ADP Qualcomm® SA8775P QNN_CONTEXT_BINARY 249.046 ms 0 - 10 MB NPU Use Export Script
vae w8a16 Samsung Galaxy S23 Snapdragon® 8 Gen 2 Mobile QNN_CONTEXT_BINARY 269.852 ms 0 - 2 MB NPU Use Export Script
vae w8a16 Samsung Galaxy S23 Snapdragon® 8 Gen 2 Mobile PRECOMPILED_QNN_ONNX 274.742 ms 0 - 68 MB NPU Use Export Script
vae w8a16 Samsung Galaxy S24 Snapdragon® 8 Gen 3 Mobile QNN_CONTEXT_BINARY 202.714 ms 0 - 21 MB NPU Use Export Script
vae w8a16 Samsung Galaxy S24 Snapdragon® 8 Gen 3 Mobile PRECOMPILED_QNN_ONNX 203.279 ms 3 - 22 MB NPU Use Export Script
vae w8a16 Snapdragon 8 Elite QRD Snapdragon® 8 Elite Mobile QNN_CONTEXT_BINARY 175.114 ms 0 - 14 MB NPU Use Export Script
vae w8a16 Snapdragon 8 Elite QRD Snapdragon® 8 Elite Mobile PRECOMPILED_QNN_ONNX 174.448 ms 3 - 17 MB NPU Use Export Script
vae w8a16 Snapdragon X Elite CRD Snapdragon® X Elite QNN_CONTEXT_BINARY 265.137 ms 0 - 0 MB NPU Use Export Script
vae w8a16 Snapdragon X Elite CRD Snapdragon® X Elite PRECOMPILED_QNN_ONNX 264.748 ms 62 - 62 MB NPU Use Export Script

Deploy to Snapdragon X Elite NPU

Please follow the Stable Diffusion Windows App tutorial to quantize model with custom weights.

Quantize and Deploy Your Own Fine-Tuned Stable Diffusion

Please follow the Quantize Stable Diffusion tutorial to quantize model with custom weights.

Installation

Install the package via pip:

pip install "qai-hub-models[stable-diffusion-v2-1]"

Configure Qualcomm® AI Hub to run this model on a cloud-hosted device

Sign-in to Qualcomm® AI Hub with your Qualcomm® ID. Once signed in navigate to Account -> Settings -> API Token.

With this API token, you can configure your client to run models on the cloud hosted devices.

qai-hub configure --api_token API_TOKEN

Navigate to docs for more information.

Demo off target

The package contains a simple end-to-end demo that downloads pre-trained weights and runs this model on a sample input.

python -m qai_hub_models.models.stable_diffusion_v2_1.demo

The above demo runs a reference implementation of pre-processing, model inference, and post processing.

NOTE: If you want running in a Jupyter Notebook or Google Colab like environment, please add the following to your cell (instead of the above).

%run -m qai_hub_models.models.stable_diffusion_v2_1.demo

Run model on a cloud-hosted device

In addition to the demo, you can also run the model on a cloud-hosted Qualcomm® device. This script does the following:

  • Performance check on-device on a cloud-hosted device
  • Downloads compiled assets that can be deployed on-device for Android.
  • Accuracy check between PyTorch and on-device outputs.
python -m qai_hub_models.models.stable_diffusion_v2_1.export
Profiling Results
------------------------------------------------------------
text_encoder
Device                          : cs_8275 (ANDROID 14)                 
Runtime                         : QNN_CONTEXT_BINARY                   
Estimated inference time (ms)   : 18.5                                 
Estimated peak memory usage (MB): [0, 8]                               
Total # Ops                     : 788                                  
Compute Unit(s)                 : npu (788 ops) gpu (0 ops) cpu (0 ops)

------------------------------------------------------------
unet
Device                          : cs_8275 (ANDROID 14)                  
Runtime                         : QNN_CONTEXT_BINARY                    
Estimated inference time (ms)   : 232.6                                 
Estimated peak memory usage (MB): [0, 8]                                
Total # Ops                     : 5784                                  
Compute Unit(s)                 : npu (5784 ops) gpu (0 ops) cpu (0 ops)

------------------------------------------------------------
vae
Device                          : cs_8275 (ANDROID 14)                 
Runtime                         : QNN_CONTEXT_BINARY                   
Estimated inference time (ms)   : 719.1                                
Estimated peak memory usage (MB): [0, 9]                               
Total # Ops                     : 175                                  
Compute Unit(s)                 : npu (175 ops) gpu (0 ops) cpu (0 ops)

Deploying compiled model to Android

The models can be deployed using multiple runtimes:

  • TensorFlow Lite (.tflite export): This tutorial provides a guide to deploy the .tflite model in an Android application.

  • QNN (.so export ): This sample app provides instructions on how to use the .so shared library in an Android application.

View on Qualcomm® AI Hub

Get more details on Stable-Diffusion-v2.1's performance across various devices here. Explore all available models on Qualcomm® AI Hub

License

  • The license for the original implementation of Stable-Diffusion-v2.1 can be found here.
  • The license for the compiled assets for on-device deployment can be found here

References

Community

Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 1 Ask for provider support