|
--- |
|
library_name: pytorch |
|
license: other |
|
tags: |
|
- backbone |
|
- real_time |
|
- android |
|
pipeline_tag: image-segmentation |
|
|
|
--- |
|
|
|
 |
|
|
|
# Unet-Segmentation: Optimized for Mobile Deployment |
|
## Real-time segmentation optimized for mobile and edge |
|
|
|
|
|
UNet is a machine learning model that produces a segmentation mask for an image. The most basic use case will label each pixel in the image as being in the foreground or the background. More advanced usage will assign a class label to each pixel. This version of the model was trained on the data from Kaggle's Carvana Image Masking Challenge (see https://www.kaggle.com/c/carvana-image-masking-challenge) and is used for vehicle segmentation. |
|
|
|
This model is an implementation of Unet-Segmentation found [here](https://github.com/milesial/Pytorch-UNet). |
|
|
|
|
|
This repository provides scripts to run Unet-Segmentation on Qualcomm® devices. |
|
More details on model performance across various devices, can be found |
|
[here](https://aihub.qualcomm.com/models/unet_segmentation). |
|
|
|
|
|
### Model Details |
|
|
|
- **Model Type:** Model_use_case.semantic_segmentation |
|
- **Model Stats:** |
|
- Model checkpoint: unet_carvana_scale1.0_epoch2 |
|
- Input resolution: 224x224 |
|
- Number of output classes: 2 (foreground / background) |
|
- Number of parameters: 31.0M |
|
- Model size (float): 118 MB |
|
- Model size (w8a8): 29.8 MB |
|
|
|
| Model | Precision | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Primary Compute Unit | Target Model |
|
|---|---|---|---|---|---|---|---|---| |
|
| Unet-Segmentation | float | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | TFLITE | 952.953 ms | 0 - 98 MB | NPU | [Unet-Segmentation.tflite](https://huggingface.co/qualcomm/Unet-Segmentation/blob/main/Unet-Segmentation.tflite) | |
|
| Unet-Segmentation | float | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | QNN_DLC | 946.447 ms | 0 - 110 MB | NPU | [Unet-Segmentation.dlc](https://huggingface.co/qualcomm/Unet-Segmentation/blob/main/Unet-Segmentation.dlc) | |
|
| Unet-Segmentation | float | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | TFLITE | 266.695 ms | 6 - 162 MB | NPU | [Unet-Segmentation.tflite](https://huggingface.co/qualcomm/Unet-Segmentation/blob/main/Unet-Segmentation.tflite) | |
|
| Unet-Segmentation | float | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | QNN_DLC | 279.553 ms | 9 - 130 MB | NPU | [Unet-Segmentation.dlc](https://huggingface.co/qualcomm/Unet-Segmentation/blob/main/Unet-Segmentation.dlc) | |
|
| Unet-Segmentation | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | TFLITE | 156.062 ms | 6 - 465 MB | NPU | [Unet-Segmentation.tflite](https://huggingface.co/qualcomm/Unet-Segmentation/blob/main/Unet-Segmentation.tflite) | |
|
| Unet-Segmentation | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | QNN_DLC | 145.554 ms | 9 - 54 MB | NPU | [Unet-Segmentation.dlc](https://huggingface.co/qualcomm/Unet-Segmentation/blob/main/Unet-Segmentation.dlc) | |
|
| Unet-Segmentation | float | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | TFLITE | 253.329 ms | 6 - 104 MB | NPU | [Unet-Segmentation.tflite](https://huggingface.co/qualcomm/Unet-Segmentation/blob/main/Unet-Segmentation.tflite) | |
|
| Unet-Segmentation | float | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | QNN_DLC | 249.775 ms | 0 - 110 MB | NPU | [Unet-Segmentation.dlc](https://huggingface.co/qualcomm/Unet-Segmentation/blob/main/Unet-Segmentation.dlc) | |
|
| Unet-Segmentation | float | SA7255P ADP | Qualcomm® SA7255P | TFLITE | 952.953 ms | 0 - 98 MB | NPU | [Unet-Segmentation.tflite](https://huggingface.co/qualcomm/Unet-Segmentation/blob/main/Unet-Segmentation.tflite) | |
|
| Unet-Segmentation | float | SA7255P ADP | Qualcomm® SA7255P | QNN_DLC | 946.447 ms | 0 - 110 MB | NPU | [Unet-Segmentation.dlc](https://huggingface.co/qualcomm/Unet-Segmentation/blob/main/Unet-Segmentation.dlc) | |
|
| Unet-Segmentation | float | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | TFLITE | 158.946 ms | 3 - 467 MB | NPU | [Unet-Segmentation.tflite](https://huggingface.co/qualcomm/Unet-Segmentation/blob/main/Unet-Segmentation.tflite) | |
|
| Unet-Segmentation | float | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | QNN_DLC | 149.352 ms | 9 - 54 MB | NPU | [Unet-Segmentation.dlc](https://huggingface.co/qualcomm/Unet-Segmentation/blob/main/Unet-Segmentation.dlc) | |
|
| Unet-Segmentation | float | SA8295P ADP | Qualcomm® SA8295P | TFLITE | 280.575 ms | 6 - 107 MB | NPU | [Unet-Segmentation.tflite](https://huggingface.co/qualcomm/Unet-Segmentation/blob/main/Unet-Segmentation.tflite) | |
|
| Unet-Segmentation | float | SA8295P ADP | Qualcomm® SA8295P | QNN_DLC | 276.093 ms | 2 - 113 MB | NPU | [Unet-Segmentation.dlc](https://huggingface.co/qualcomm/Unet-Segmentation/blob/main/Unet-Segmentation.dlc) | |
|
| Unet-Segmentation | float | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | TFLITE | 152.13 ms | 6 - 472 MB | NPU | [Unet-Segmentation.tflite](https://huggingface.co/qualcomm/Unet-Segmentation/blob/main/Unet-Segmentation.tflite) | |
|
| Unet-Segmentation | float | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | QNN_DLC | 152.947 ms | 10 - 54 MB | NPU | [Unet-Segmentation.dlc](https://huggingface.co/qualcomm/Unet-Segmentation/blob/main/Unet-Segmentation.dlc) | |
|
| Unet-Segmentation | float | SA8775P ADP | Qualcomm® SA8775P | TFLITE | 253.329 ms | 6 - 104 MB | NPU | [Unet-Segmentation.tflite](https://huggingface.co/qualcomm/Unet-Segmentation/blob/main/Unet-Segmentation.tflite) | |
|
| Unet-Segmentation | float | SA8775P ADP | Qualcomm® SA8775P | QNN_DLC | 249.775 ms | 0 - 110 MB | NPU | [Unet-Segmentation.dlc](https://huggingface.co/qualcomm/Unet-Segmentation/blob/main/Unet-Segmentation.dlc) | |
|
| Unet-Segmentation | float | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | TFLITE | 151.859 ms | 6 - 466 MB | NPU | [Unet-Segmentation.tflite](https://huggingface.co/qualcomm/Unet-Segmentation/blob/main/Unet-Segmentation.tflite) | |
|
| Unet-Segmentation | float | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | QNN_DLC | 151.338 ms | 9 - 55 MB | NPU | [Unet-Segmentation.dlc](https://huggingface.co/qualcomm/Unet-Segmentation/blob/main/Unet-Segmentation.dlc) | |
|
| Unet-Segmentation | float | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | ONNX | 158.003 ms | 13 - 156 MB | NPU | [Unet-Segmentation.onnx](https://huggingface.co/qualcomm/Unet-Segmentation/blob/main/Unet-Segmentation.onnx) | |
|
| Unet-Segmentation | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | TFLITE | 115.373 ms | 4 - 136 MB | NPU | [Unet-Segmentation.tflite](https://huggingface.co/qualcomm/Unet-Segmentation/blob/main/Unet-Segmentation.tflite) | |
|
| Unet-Segmentation | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | QNN_DLC | 113.677 ms | 9 - 118 MB | NPU | [Unet-Segmentation.dlc](https://huggingface.co/qualcomm/Unet-Segmentation/blob/main/Unet-Segmentation.dlc) | |
|
| Unet-Segmentation | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | ONNX | 118.521 ms | 21 - 129 MB | NPU | [Unet-Segmentation.onnx](https://huggingface.co/qualcomm/Unet-Segmentation/blob/main/Unet-Segmentation.onnx) | |
|
| Unet-Segmentation | float | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | TFLITE | 107.435 ms | 5 - 104 MB | NPU | [Unet-Segmentation.tflite](https://huggingface.co/qualcomm/Unet-Segmentation/blob/main/Unet-Segmentation.tflite) | |
|
| Unet-Segmentation | float | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | QNN_DLC | 93.485 ms | 18 - 132 MB | NPU | [Unet-Segmentation.dlc](https://huggingface.co/qualcomm/Unet-Segmentation/blob/main/Unet-Segmentation.dlc) | |
|
| Unet-Segmentation | float | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | ONNX | 108.739 ms | 21 - 129 MB | NPU | [Unet-Segmentation.onnx](https://huggingface.co/qualcomm/Unet-Segmentation/blob/main/Unet-Segmentation.onnx) | |
|
| Unet-Segmentation | float | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN_DLC | 145.843 ms | 83 - 83 MB | NPU | [Unet-Segmentation.dlc](https://huggingface.co/qualcomm/Unet-Segmentation/blob/main/Unet-Segmentation.dlc) | |
|
| Unet-Segmentation | float | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 151.145 ms | 53 - 53 MB | NPU | [Unet-Segmentation.onnx](https://huggingface.co/qualcomm/Unet-Segmentation/blob/main/Unet-Segmentation.onnx) | |
|
| Unet-Segmentation | w8a8 | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | TFLITE | 127.512 ms | 2 - 49 MB | NPU | [Unet-Segmentation.tflite](https://huggingface.co/qualcomm/Unet-Segmentation/blob/main/Unet-Segmentation_w8a8.tflite) | |
|
| Unet-Segmentation | w8a8 | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | QNN_DLC | 1393.003 ms | 2 - 62 MB | NPU | [Unet-Segmentation.dlc](https://huggingface.co/qualcomm/Unet-Segmentation/blob/main/Unet-Segmentation_w8a8.dlc) | |
|
| Unet-Segmentation | w8a8 | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | TFLITE | 54.66 ms | 2 - 89 MB | NPU | [Unet-Segmentation.tflite](https://huggingface.co/qualcomm/Unet-Segmentation/blob/main/Unet-Segmentation_w8a8.tflite) | |
|
| Unet-Segmentation | w8a8 | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | QNN_DLC | 57.551 ms | 2 - 100 MB | NPU | [Unet-Segmentation.dlc](https://huggingface.co/qualcomm/Unet-Segmentation/blob/main/Unet-Segmentation_w8a8.dlc) | |
|
| Unet-Segmentation | w8a8 | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | TFLITE | 38.472 ms | 2 - 867 MB | NPU | [Unet-Segmentation.tflite](https://huggingface.co/qualcomm/Unet-Segmentation/blob/main/Unet-Segmentation_w8a8.tflite) | |
|
| Unet-Segmentation | w8a8 | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | QNN_DLC | 583.061 ms | 2 - 19 MB | NPU | [Unet-Segmentation.dlc](https://huggingface.co/qualcomm/Unet-Segmentation/blob/main/Unet-Segmentation_w8a8.dlc) | |
|
| Unet-Segmentation | w8a8 | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | TFLITE | 35.487 ms | 2 - 48 MB | NPU | [Unet-Segmentation.tflite](https://huggingface.co/qualcomm/Unet-Segmentation/blob/main/Unet-Segmentation_w8a8.tflite) | |
|
| Unet-Segmentation | w8a8 | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | QNN_DLC | 679.256 ms | 0 - 60 MB | NPU | [Unet-Segmentation.dlc](https://huggingface.co/qualcomm/Unet-Segmentation/blob/main/Unet-Segmentation_w8a8.dlc) | |
|
| Unet-Segmentation | w8a8 | RB3 Gen 2 (Proxy) | Qualcomm® QCS6490 (Proxy) | TFLITE | 308.485 ms | 2 - 262 MB | NPU | [Unet-Segmentation.tflite](https://huggingface.co/qualcomm/Unet-Segmentation/blob/main/Unet-Segmentation_w8a8.tflite) | |
|
| Unet-Segmentation | w8a8 | RB3 Gen 2 (Proxy) | Qualcomm® QCS6490 (Proxy) | QNN_DLC | 332.825 ms | 2 - 268 MB | NPU | [Unet-Segmentation.dlc](https://huggingface.co/qualcomm/Unet-Segmentation/blob/main/Unet-Segmentation_w8a8.dlc) | |
|
| Unet-Segmentation | w8a8 | RB5 (Proxy) | Qualcomm® QCS8250 (Proxy) | TFLITE | 3126.186 ms | 0 - 847 MB | NPU | [Unet-Segmentation.tflite](https://huggingface.co/qualcomm/Unet-Segmentation/blob/main/Unet-Segmentation_w8a8.tflite) | |
|
| Unet-Segmentation | w8a8 | SA7255P ADP | Qualcomm® SA7255P | TFLITE | 127.512 ms | 2 - 49 MB | NPU | [Unet-Segmentation.tflite](https://huggingface.co/qualcomm/Unet-Segmentation/blob/main/Unet-Segmentation_w8a8.tflite) | |
|
| Unet-Segmentation | w8a8 | SA7255P ADP | Qualcomm® SA7255P | QNN_DLC | 1393.003 ms | 2 - 62 MB | NPU | [Unet-Segmentation.dlc](https://huggingface.co/qualcomm/Unet-Segmentation/blob/main/Unet-Segmentation_w8a8.dlc) | |
|
| Unet-Segmentation | w8a8 | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | TFLITE | 37.675 ms | 1 - 867 MB | NPU | [Unet-Segmentation.tflite](https://huggingface.co/qualcomm/Unet-Segmentation/blob/main/Unet-Segmentation_w8a8.tflite) | |
|
| Unet-Segmentation | w8a8 | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | QNN_DLC | 583.468 ms | 2 - 21 MB | NPU | [Unet-Segmentation.dlc](https://huggingface.co/qualcomm/Unet-Segmentation/blob/main/Unet-Segmentation_w8a8.dlc) | |
|
| Unet-Segmentation | w8a8 | SA8295P ADP | Qualcomm® SA8295P | TFLITE | 68.171 ms | 2 - 49 MB | NPU | [Unet-Segmentation.tflite](https://huggingface.co/qualcomm/Unet-Segmentation/blob/main/Unet-Segmentation_w8a8.tflite) | |
|
| Unet-Segmentation | w8a8 | SA8295P ADP | Qualcomm® SA8295P | QNN_DLC | 64.786 ms | 0 - 61 MB | NPU | [Unet-Segmentation.dlc](https://huggingface.co/qualcomm/Unet-Segmentation/blob/main/Unet-Segmentation_w8a8.dlc) | |
|
| Unet-Segmentation | w8a8 | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | TFLITE | 38.154 ms | 2 - 863 MB | NPU | [Unet-Segmentation.tflite](https://huggingface.co/qualcomm/Unet-Segmentation/blob/main/Unet-Segmentation_w8a8.tflite) | |
|
| Unet-Segmentation | w8a8 | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | QNN_DLC | 583.569 ms | 2 - 28 MB | NPU | [Unet-Segmentation.dlc](https://huggingface.co/qualcomm/Unet-Segmentation/blob/main/Unet-Segmentation_w8a8.dlc) | |
|
| Unet-Segmentation | w8a8 | SA8775P ADP | Qualcomm® SA8775P | TFLITE | 35.487 ms | 2 - 48 MB | NPU | [Unet-Segmentation.tflite](https://huggingface.co/qualcomm/Unet-Segmentation/blob/main/Unet-Segmentation_w8a8.tflite) | |
|
| Unet-Segmentation | w8a8 | SA8775P ADP | Qualcomm® SA8775P | QNN_DLC | 679.256 ms | 0 - 60 MB | NPU | [Unet-Segmentation.dlc](https://huggingface.co/qualcomm/Unet-Segmentation/blob/main/Unet-Segmentation_w8a8.dlc) | |
|
| Unet-Segmentation | w8a8 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | TFLITE | 37.638 ms | 2 - 865 MB | NPU | [Unet-Segmentation.tflite](https://huggingface.co/qualcomm/Unet-Segmentation/blob/main/Unet-Segmentation_w8a8.tflite) | |
|
| Unet-Segmentation | w8a8 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | QNN_DLC | 583.143 ms | 2 - 20 MB | NPU | [Unet-Segmentation.dlc](https://huggingface.co/qualcomm/Unet-Segmentation/blob/main/Unet-Segmentation_w8a8.dlc) | |
|
| Unet-Segmentation | w8a8 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | ONNX | 130.225 ms | 0 - 150 MB | NPU | [Unet-Segmentation.onnx](https://huggingface.co/qualcomm/Unet-Segmentation/blob/main/Unet-Segmentation_w8a8.onnx) | |
|
| Unet-Segmentation | w8a8 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | TFLITE | 28.733 ms | 0 - 88 MB | NPU | [Unet-Segmentation.tflite](https://huggingface.co/qualcomm/Unet-Segmentation/blob/main/Unet-Segmentation_w8a8.tflite) | |
|
| Unet-Segmentation | w8a8 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | QNN_DLC | 449.851 ms | 2 - 102 MB | NPU | [Unet-Segmentation.dlc](https://huggingface.co/qualcomm/Unet-Segmentation/blob/main/Unet-Segmentation_w8a8.dlc) | |
|
| Unet-Segmentation | w8a8 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | ONNX | 111.239 ms | 29 - 701 MB | NPU | [Unet-Segmentation.onnx](https://huggingface.co/qualcomm/Unet-Segmentation/blob/main/Unet-Segmentation_w8a8.onnx) | |
|
| Unet-Segmentation | w8a8 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | TFLITE | 24.08 ms | 1 - 52 MB | NPU | [Unet-Segmentation.tflite](https://huggingface.co/qualcomm/Unet-Segmentation/blob/main/Unet-Segmentation_w8a8.tflite) | |
|
| Unet-Segmentation | w8a8 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | QNN_DLC | 519.786 ms | 6 - 74 MB | NPU | [Unet-Segmentation.dlc](https://huggingface.co/qualcomm/Unet-Segmentation/blob/main/Unet-Segmentation_w8a8.dlc) | |
|
| Unet-Segmentation | w8a8 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | ONNX | 91.315 ms | 1 - 749 MB | NPU | [Unet-Segmentation.onnx](https://huggingface.co/qualcomm/Unet-Segmentation/blob/main/Unet-Segmentation_w8a8.onnx) | |
|
| Unet-Segmentation | w8a8 | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN_DLC | 615.428 ms | 67 - 67 MB | NPU | [Unet-Segmentation.dlc](https://huggingface.co/qualcomm/Unet-Segmentation/blob/main/Unet-Segmentation_w8a8.dlc) | |
|
| Unet-Segmentation | w8a8 | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 156.351 ms | 39 - 39 MB | NPU | [Unet-Segmentation.onnx](https://huggingface.co/qualcomm/Unet-Segmentation/blob/main/Unet-Segmentation_w8a8.onnx) | |
|
|
|
|
|
|
|
|
|
## Installation |
|
|
|
|
|
Install the package via pip: |
|
```bash |
|
pip install qai-hub-models |
|
``` |
|
|
|
|
|
## Configure Qualcomm® AI Hub to run this model on a cloud-hosted device |
|
|
|
Sign-in to [Qualcomm® AI Hub](https://app.aihub.qualcomm.com/) with your |
|
Qualcomm® ID. Once signed in navigate to `Account -> Settings -> API Token`. |
|
|
|
With this API token, you can configure your client to run models on the cloud |
|
hosted devices. |
|
```bash |
|
qai-hub configure --api_token API_TOKEN |
|
``` |
|
Navigate to [docs](https://app.aihub.qualcomm.com/docs/) for more information. |
|
|
|
|
|
|
|
## Demo off target |
|
|
|
The package contains a simple end-to-end demo that downloads pre-trained |
|
weights and runs this model on a sample input. |
|
|
|
```bash |
|
python -m qai_hub_models.models.unet_segmentation.demo |
|
``` |
|
|
|
The above demo runs a reference implementation of pre-processing, model |
|
inference, and post processing. |
|
|
|
**NOTE**: If you want running in a Jupyter Notebook or Google Colab like |
|
environment, please add the following to your cell (instead of the above). |
|
``` |
|
%run -m qai_hub_models.models.unet_segmentation.demo |
|
``` |
|
|
|
|
|
### Run model on a cloud-hosted device |
|
|
|
In addition to the demo, you can also run the model on a cloud-hosted Qualcomm® |
|
device. This script does the following: |
|
* Performance check on-device on a cloud-hosted device |
|
* Downloads compiled assets that can be deployed on-device for Android. |
|
* Accuracy check between PyTorch and on-device outputs. |
|
|
|
```bash |
|
python -m qai_hub_models.models.unet_segmentation.export |
|
``` |
|
``` |
|
Profiling Results |
|
------------------------------------------------------------ |
|
Unet-Segmentation |
|
Device : cs_8275 (ANDROID 14) |
|
Runtime : TFLITE |
|
Estimated inference time (ms) : 953.0 |
|
Estimated peak memory usage (MB): [0, 98] |
|
Total # Ops : 32 |
|
Compute Unit(s) : npu (32 ops) gpu (0 ops) cpu (0 ops) |
|
``` |
|
|
|
|
|
## How does this work? |
|
|
|
This [export script](https://aihub.qualcomm.com/models/unet_segmentation/qai_hub_models/models/Unet-Segmentation/export.py) |
|
leverages [Qualcomm® AI Hub](https://aihub.qualcomm.com/) to optimize, validate, and deploy this model |
|
on-device. Lets go through each step below in detail: |
|
|
|
Step 1: **Compile model for on-device deployment** |
|
|
|
To compile a PyTorch model for on-device deployment, we first trace the model |
|
in memory using the `jit.trace` and then call the `submit_compile_job` API. |
|
|
|
```python |
|
import torch |
|
|
|
import qai_hub as hub |
|
from qai_hub_models.models.unet_segmentation import Model |
|
|
|
# Load the model |
|
torch_model = Model.from_pretrained() |
|
|
|
# Device |
|
device = hub.Device("Samsung Galaxy S24") |
|
|
|
# Trace model |
|
input_shape = torch_model.get_input_spec() |
|
sample_inputs = torch_model.sample_inputs() |
|
|
|
pt_model = torch.jit.trace(torch_model, [torch.tensor(data[0]) for _, data in sample_inputs.items()]) |
|
|
|
# Compile model on a specific device |
|
compile_job = hub.submit_compile_job( |
|
model=pt_model, |
|
device=device, |
|
input_specs=torch_model.get_input_spec(), |
|
) |
|
|
|
# Get target model to run on-device |
|
target_model = compile_job.get_target_model() |
|
|
|
``` |
|
|
|
|
|
Step 2: **Performance profiling on cloud-hosted device** |
|
|
|
After compiling models from step 1. Models can be profiled model on-device using the |
|
`target_model`. Note that this scripts runs the model on a device automatically |
|
provisioned in the cloud. Once the job is submitted, you can navigate to a |
|
provided job URL to view a variety of on-device performance metrics. |
|
```python |
|
profile_job = hub.submit_profile_job( |
|
model=target_model, |
|
device=device, |
|
) |
|
|
|
``` |
|
|
|
Step 3: **Verify on-device accuracy** |
|
|
|
To verify the accuracy of the model on-device, you can run on-device inference |
|
on sample input data on the same cloud hosted device. |
|
```python |
|
input_data = torch_model.sample_inputs() |
|
inference_job = hub.submit_inference_job( |
|
model=target_model, |
|
device=device, |
|
inputs=input_data, |
|
) |
|
on_device_output = inference_job.download_output_data() |
|
|
|
``` |
|
With the output of the model, you can compute like PSNR, relative errors or |
|
spot check the output with expected output. |
|
|
|
**Note**: This on-device profiling and inference requires access to Qualcomm® |
|
AI Hub. [Sign up for access](https://myaccount.qualcomm.com/signup). |
|
|
|
|
|
|
|
## Run demo on a cloud-hosted device |
|
|
|
You can also run the demo on-device. |
|
|
|
```bash |
|
python -m qai_hub_models.models.unet_segmentation.demo --eval-mode on-device |
|
``` |
|
|
|
**NOTE**: If you want running in a Jupyter Notebook or Google Colab like |
|
environment, please add the following to your cell (instead of the above). |
|
``` |
|
%run -m qai_hub_models.models.unet_segmentation.demo -- --eval-mode on-device |
|
``` |
|
|
|
|
|
## Deploying compiled model to Android |
|
|
|
|
|
The models can be deployed using multiple runtimes: |
|
- TensorFlow Lite (`.tflite` export): [This |
|
tutorial](https://www.tensorflow.org/lite/android/quickstart) provides a |
|
guide to deploy the .tflite model in an Android application. |
|
|
|
|
|
- QNN (`.so` export ): This [sample |
|
app](https://docs.qualcomm.com/bundle/publicresource/topics/80-63442-50/sample_app.html) |
|
provides instructions on how to use the `.so` shared library in an Android application. |
|
|
|
|
|
## View on Qualcomm® AI Hub |
|
Get more details on Unet-Segmentation's performance across various devices [here](https://aihub.qualcomm.com/models/unet_segmentation). |
|
Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/) |
|
|
|
|
|
## License |
|
* The license for the original implementation of Unet-Segmentation can be found |
|
[here](https://github.com/milesial/Pytorch-UNet/blob/master/LICENSE). |
|
* The license for the compiled assets for on-device deployment can be found [here](https://github.com/milesial/Pytorch-UNet/blob/master/LICENSE) |
|
|
|
|
|
|
|
## References |
|
* [U-Net: Convolutional Networks for Biomedical Image Segmentation](https://arxiv.org/abs/1505.04597) |
|
* [Source Model Implementation](https://github.com/milesial/Pytorch-UNet) |
|
|
|
|
|
|
|
## Community |
|
* Join [our AI Hub Slack community](https://aihub.qualcomm.com/community/slack) to collaborate, post questions and learn more about on-device AI. |
|
* For questions or feedback please [reach out to us](mailto:ai-hub-support@qti.qualcomm.com). |
|
|
|
|
|
|