YOLOv8-Segmentation / README.md
qaihm-bot's picture
v0.31.0
30bea0c verified
---
library_name: pytorch
license: other
tags:
- real_time
- android
pipeline_tag: image-segmentation
---
![](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/models/yolov8_seg/web-assets/model_demo.png)
# YOLOv8-Segmentation: Optimized for Mobile Deployment
## Real-time object segmentation optimized for mobile and edge by Ultralytics
Ultralytics YOLOv8 is a machine learning model that predicts bounding boxes, segmentation masks and classes of objects in an image.
This model is an implementation of YOLOv8-Segmentation found [here](https://github.com/ultralytics/ultralytics/tree/main/ultralytics/models/yolo/segment).
More details on model performance across various devices, can be found [here](https://aihub.qualcomm.com/models/yolov8_seg).
### Model Details
- **Model Type:** Model_use_case.semantic_segmentation
- **Model Stats:**
- Model checkpoint: YOLOv8N-Seg
- Input resolution: 640x640
- Number of parameters: 3.43M
- Number of output classes: 80
- Model size (float): 13.2 MB
| Model | Precision | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Primary Compute Unit | Target Model
|---|---|---|---|---|---|---|---|---|
| YOLOv8-Segmentation | float | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | TFLITE | 21.491 ms | 4 - 65 MB | NPU | -- |
| YOLOv8-Segmentation | float | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | QNN_DLC | 17.023 ms | 4 - 117 MB | NPU | -- |
| YOLOv8-Segmentation | float | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | TFLITE | 11.53 ms | 4 - 50 MB | NPU | -- |
| YOLOv8-Segmentation | float | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | QNN_DLC | 10.219 ms | 5 - 43 MB | NPU | -- |
| YOLOv8-Segmentation | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | TFLITE | 8.117 ms | 4 - 27 MB | NPU | -- |
| YOLOv8-Segmentation | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | QNN_DLC | 4.457 ms | 5 - 41 MB | NPU | -- |
| YOLOv8-Segmentation | float | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | TFLITE | 10.25 ms | 4 - 66 MB | NPU | -- |
| YOLOv8-Segmentation | float | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | QNN_DLC | 6.317 ms | 0 - 112 MB | NPU | -- |
| YOLOv8-Segmentation | float | SA7255P ADP | Qualcomm® SA7255P | TFLITE | 21.491 ms | 4 - 65 MB | NPU | -- |
| YOLOv8-Segmentation | float | SA7255P ADP | Qualcomm® SA7255P | QNN_DLC | 17.023 ms | 4 - 117 MB | NPU | -- |
| YOLOv8-Segmentation | float | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | TFLITE | 8.169 ms | 4 - 28 MB | NPU | -- |
| YOLOv8-Segmentation | float | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | QNN_DLC | 4.48 ms | 5 - 48 MB | NPU | -- |
| YOLOv8-Segmentation | float | SA8295P ADP | Qualcomm® SA8295P | TFLITE | 12.674 ms | 4 - 34 MB | NPU | -- |
| YOLOv8-Segmentation | float | SA8295P ADP | Qualcomm® SA8295P | QNN_DLC | 8.576 ms | 0 - 34 MB | NPU | -- |
| YOLOv8-Segmentation | float | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | TFLITE | 8.213 ms | 4 - 26 MB | NPU | -- |
| YOLOv8-Segmentation | float | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | QNN_DLC | 4.481 ms | 5 - 35 MB | NPU | -- |
| YOLOv8-Segmentation | float | SA8775P ADP | Qualcomm® SA8775P | TFLITE | 10.25 ms | 4 - 66 MB | NPU | -- |
| YOLOv8-Segmentation | float | SA8775P ADP | Qualcomm® SA8775P | QNN_DLC | 6.317 ms | 0 - 112 MB | NPU | -- |
| YOLOv8-Segmentation | float | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | TFLITE | 8.157 ms | 4 - 27 MB | NPU | -- |
| YOLOv8-Segmentation | float | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | QNN_DLC | 4.47 ms | 4 - 43 MB | NPU | -- |
| YOLOv8-Segmentation | float | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | ONNX | 6.584 ms | 9 - 78 MB | NPU | -- |
| YOLOv8-Segmentation | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | TFLITE | 5.902 ms | 3 - 68 MB | NPU | -- |
| YOLOv8-Segmentation | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | QNN_DLC | 3.28 ms | 5 - 204 MB | NPU | -- |
| YOLOv8-Segmentation | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | ONNX | 4.467 ms | 16 - 208 MB | NPU | -- |
| YOLOv8-Segmentation | float | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | TFLITE | 5.555 ms | 3 - 66 MB | NPU | -- |
| YOLOv8-Segmentation | float | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | QNN_DLC | 2.965 ms | 5 - 130 MB | NPU | -- |
| YOLOv8-Segmentation | float | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | ONNX | 4.315 ms | 5 - 136 MB | NPU | -- |
| YOLOv8-Segmentation | float | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN_DLC | 5.029 ms | 5 - 5 MB | NPU | -- |
| YOLOv8-Segmentation | float | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 7.084 ms | 17 - 17 MB | NPU | -- |
| YOLOv8-Segmentation | w8a16 | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | QNN_DLC | 8.192 ms | 1 - 35 MB | NPU | -- |
| YOLOv8-Segmentation | w8a16 | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | QNN_DLC | 5.093 ms | 2 - 43 MB | NPU | -- |
| YOLOv8-Segmentation | w8a16 | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | QNN_DLC | 4.052 ms | 2 - 15 MB | NPU | -- |
| YOLOv8-Segmentation | w8a16 | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | QNN_DLC | 4.734 ms | 2 - 39 MB | NPU | -- |
| YOLOv8-Segmentation | w8a16 | RB3 Gen 2 (Proxy) | Qualcomm® QCS6490 (Proxy) | QNN_DLC | 15.849 ms | 2 - 39 MB | NPU | -- |
| YOLOv8-Segmentation | w8a16 | SA7255P ADP | Qualcomm® SA7255P | QNN_DLC | 8.192 ms | 1 - 35 MB | NPU | -- |
| YOLOv8-Segmentation | w8a16 | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | QNN_DLC | 4.062 ms | 2 - 14 MB | NPU | -- |
| YOLOv8-Segmentation | w8a16 | SA8295P ADP | Qualcomm® SA8295P | QNN_DLC | 5.404 ms | 2 - 39 MB | NPU | -- |
| YOLOv8-Segmentation | w8a16 | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | QNN_DLC | 4.06 ms | 2 - 16 MB | NPU | -- |
| YOLOv8-Segmentation | w8a16 | SA8775P ADP | Qualcomm® SA8775P | QNN_DLC | 4.734 ms | 2 - 39 MB | NPU | -- |
| YOLOv8-Segmentation | w8a16 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | QNN_DLC | 4.055 ms | 2 - 15 MB | NPU | -- |
| YOLOv8-Segmentation | w8a16 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | ONNX | 7.963 ms | 6 - 28 MB | NPU | -- |
| YOLOv8-Segmentation | w8a16 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | QNN_DLC | 2.685 ms | 2 - 48 MB | NPU | -- |
| YOLOv8-Segmentation | w8a16 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | ONNX | 5.161 ms | 10 - 83 MB | NPU | -- |
| YOLOv8-Segmentation | w8a16 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | QNN_DLC | 1.918 ms | 2 - 44 MB | NPU | -- |
| YOLOv8-Segmentation | w8a16 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | ONNX | 4.743 ms | 9 - 106 MB | NPU | -- |
| YOLOv8-Segmentation | w8a16 | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN_DLC | 4.951 ms | 0 - 0 MB | NPU | -- |
| YOLOv8-Segmentation | w8a16 | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 8.711 ms | 15 - 15 MB | NPU | -- |
## License
* The license for the original implementation of YOLOv8-Segmentation can be found
[here](https://github.com/ultralytics/ultralytics/blob/main/LICENSE).
* The license for the compiled assets for on-device deployment can be found [here](https://github.com/ultralytics/ultralytics/blob/main/LICENSE)
## References
* [Ultralytics YOLOv8 Docs: Instance Segmentation](https://docs.ultralytics.com/tasks/segment/)
* [Source Model Implementation](https://github.com/ultralytics/ultralytics/tree/main/ultralytics/models/yolo/segment)
## Community
* Join [our AI Hub Slack community](https://qualcomm-ai-hub.slack.com/join/shared_invite/zt-2d5zsmas3-Sj0Q9TzslueCjS31eXG2UA#/shared-invite/email) to collaborate, post questions and learn more about on-device AI.
* For questions or feedback please [reach out to us](mailto:ai-hub-support@qti.qualcomm.com).
## Usage and Limitations
Model may not be used for or in connection with any of the following applications:
- Accessing essential private and public services and benefits;
- Administration of justice and democratic processes;
- Assessing or recognizing the emotional state of a person;
- Biometric and biometrics-based systems, including categorization of persons based on sensitive characteristics;
- Education and vocational training;
- Employment and workers management;
- Exploitation of the vulnerabilities of persons resulting in harmful behavior;
- General purpose social scoring;
- Law enforcement;
- Management and operation of critical infrastructure;
- Migration, asylum and border control management;
- Predictive policing;
- Real-time remote biometric identification in public spaces;
- Recommender systems of social media platforms;
- Scraping of facial images (from the internet or otherwise); and/or
- Subliminal manipulation