library_name: pytorch
license: other
tags:
- real_time
- android
pipeline_tag: object-detection
Yolo-v6: Optimized for Mobile Deployment
Real-time object detection optimized for mobile and edge
YoloV6 is a machine learning model that predicts bounding boxes and classes of objects in an image.
This model is an implementation of Yolo-v6 found here.
This repository provides scripts to run Yolo-v6 on Qualcomm® devices. More details on model performance across various devices, can be found here.
WARNING: The model assets are not readily available for download due to licensing restrictions.
Model Details
- Model Type: Model_use_case.object_detection
- Model Stats:
- Model checkpoint: YoloV6-N
- Input resolution: 640x640
- Number of parameters: 4.68M
- Model size (float): 17.9 MB
- Model size (w8a8): 4.68 MB
- Model size (w8a16): 5.03 MB
Model | Precision | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Primary Compute Unit | Target Model |
---|---|---|---|---|---|---|---|---|
Yolo-v6 | float | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | TFLITE | 22.166 ms | 0 - 43 MB | NPU | -- |
Yolo-v6 | float | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | QNN_DLC | 14.869 ms | 0 - 74 MB | NPU | -- |
Yolo-v6 | float | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | TFLITE | 12.435 ms | 0 - 42 MB | NPU | -- |
Yolo-v6 | float | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | QNN_DLC | 7.409 ms | 5 - 40 MB | NPU | -- |
Yolo-v6 | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | TFLITE | 10.718 ms | 0 - 15 MB | NPU | -- |
Yolo-v6 | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | QNN_DLC | 4.501 ms | 5 - 33 MB | NPU | -- |
Yolo-v6 | float | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | TFLITE | 12.557 ms | 0 - 43 MB | NPU | -- |
Yolo-v6 | float | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | QNN_DLC | 6.25 ms | 2 - 69 MB | NPU | -- |
Yolo-v6 | float | SA7255P ADP | Qualcomm® SA7255P | TFLITE | 22.166 ms | 0 - 43 MB | NPU | -- |
Yolo-v6 | float | SA7255P ADP | Qualcomm® SA7255P | QNN_DLC | 14.869 ms | 0 - 74 MB | NPU | -- |
Yolo-v6 | float | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | TFLITE | 10.987 ms | 0 - 22 MB | NPU | -- |
Yolo-v6 | float | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | QNN_DLC | 4.513 ms | 4 - 35 MB | NPU | -- |
Yolo-v6 | float | SA8295P ADP | Qualcomm® SA8295P | TFLITE | 13.624 ms | 0 - 29 MB | NPU | -- |
Yolo-v6 | float | SA8295P ADP | Qualcomm® SA8295P | QNN_DLC | 6.94 ms | 4 - 32 MB | NPU | -- |
Yolo-v6 | float | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | TFLITE | 10.779 ms | 0 - 15 MB | NPU | -- |
Yolo-v6 | float | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | QNN_DLC | 4.523 ms | 5 - 31 MB | NPU | -- |
Yolo-v6 | float | SA8775P ADP | Qualcomm® SA8775P | TFLITE | 12.557 ms | 0 - 43 MB | NPU | -- |
Yolo-v6 | float | SA8775P ADP | Qualcomm® SA8775P | QNN_DLC | 6.25 ms | 2 - 69 MB | NPU | -- |
Yolo-v6 | float | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | TFLITE | 10.745 ms | 0 - 16 MB | NPU | -- |
Yolo-v6 | float | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | QNN_DLC | 4.549 ms | 3 - 34 MB | NPU | -- |
Yolo-v6 | float | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | ONNX | 5.639 ms | 0 - 49 MB | NPU | -- |
Yolo-v6 | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | TFLITE | 7.401 ms | 0 - 58 MB | NPU | -- |
Yolo-v6 | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | QNN_DLC | 3.225 ms | 5 - 111 MB | NPU | -- |
Yolo-v6 | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | ONNX | 4.108 ms | 2 - 151 MB | NPU | -- |
Yolo-v6 | float | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | TFLITE | 7.287 ms | 0 - 51 MB | NPU | -- |
Yolo-v6 | float | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | QNN_DLC | 2.949 ms | 5 - 76 MB | NPU | -- |
Yolo-v6 | float | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | ONNX | 4.118 ms | 5 - 102 MB | NPU | -- |
Yolo-v6 | float | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN_DLC | 4.995 ms | 0 - 0 MB | NPU | -- |
Yolo-v6 | float | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 6.154 ms | 6 - 6 MB | NPU | -- |
Yolo-v6 | w8a16 | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | QNN_DLC | 5.183 ms | 2 - 28 MB | NPU | -- |
Yolo-v6 | w8a16 | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | QNN_DLC | 2.751 ms | 2 - 33 MB | NPU | -- |
Yolo-v6 | w8a16 | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | QNN_DLC | 2.156 ms | 2 - 12 MB | NPU | -- |
Yolo-v6 | w8a16 | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | QNN_DLC | 2.744 ms | 0 - 26 MB | NPU | -- |
Yolo-v6 | w8a16 | RB3 Gen 2 (Proxy) | Qualcomm® QCS6490 (Proxy) | QNN_DLC | 8.589 ms | 0 - 29 MB | NPU | -- |
Yolo-v6 | w8a16 | SA7255P ADP | Qualcomm® SA7255P | QNN_DLC | 5.183 ms | 2 - 28 MB | NPU | -- |
Yolo-v6 | w8a16 | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | QNN_DLC | 2.186 ms | 3 - 12 MB | NPU | -- |
Yolo-v6 | w8a16 | SA8295P ADP | Qualcomm® SA8295P | QNN_DLC | 3.313 ms | 1 - 32 MB | NPU | -- |
Yolo-v6 | w8a16 | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | QNN_DLC | 2.173 ms | 4 - 12 MB | NPU | -- |
Yolo-v6 | w8a16 | SA8775P ADP | Qualcomm® SA8775P | QNN_DLC | 2.744 ms | 0 - 26 MB | NPU | -- |
Yolo-v6 | w8a16 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | QNN_DLC | 2.184 ms | 3 - 12 MB | NPU | -- |
Yolo-v6 | w8a16 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | ONNX | 5.802 ms | 0 - 34 MB | NPU | -- |
Yolo-v6 | w8a16 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | QNN_DLC | 1.452 ms | 2 - 41 MB | NPU | -- |
Yolo-v6 | w8a16 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | ONNX | 4.183 ms | 2 - 101 MB | NPU | -- |
Yolo-v6 | w8a16 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | QNN_DLC | 1.334 ms | 2 - 34 MB | NPU | -- |
Yolo-v6 | w8a16 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | ONNX | 3.94 ms | 2 - 102 MB | NPU | -- |
Yolo-v6 | w8a16 | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN_DLC | 2.587 ms | 8 - 8 MB | NPU | -- |
Yolo-v6 | w8a16 | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 6.284 ms | 3 - 3 MB | NPU | -- |
Yolo-v6 | w8a8 | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | TFLITE | 4.421 ms | 0 - 20 MB | NPU | -- |
Yolo-v6 | w8a8 | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | QNN_DLC | 3.209 ms | 1 - 22 MB | NPU | -- |
Yolo-v6 | w8a8 | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | TFLITE | 2.273 ms | 0 - 33 MB | NPU | -- |
Yolo-v6 | w8a8 | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | QNN_DLC | 1.674 ms | 1 - 32 MB | NPU | -- |
Yolo-v6 | w8a8 | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | TFLITE | 2.078 ms | 0 - 29 MB | NPU | -- |
Yolo-v6 | w8a8 | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | QNN_DLC | 1.358 ms | 1 - 26 MB | NPU | -- |
Yolo-v6 | w8a8 | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | TFLITE | 2.479 ms | 0 - 22 MB | NPU | -- |
Yolo-v6 | w8a8 | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | QNN_DLC | 1.694 ms | 1 - 24 MB | NPU | -- |
Yolo-v6 | w8a8 | RB3 Gen 2 (Proxy) | Qualcomm® QCS6490 (Proxy) | TFLITE | 4.415 ms | 0 - 30 MB | NPU | -- |
Yolo-v6 | w8a8 | RB3 Gen 2 (Proxy) | Qualcomm® QCS6490 (Proxy) | QNN_DLC | 4.897 ms | 1 - 27 MB | NPU | -- |
Yolo-v6 | w8a8 | RB5 (Proxy) | Qualcomm® QCS8250 (Proxy) | TFLITE | 36.109 ms | 3 - 12 MB | NPU | -- |
Yolo-v6 | w8a8 | SA7255P ADP | Qualcomm® SA7255P | TFLITE | 4.421 ms | 0 - 20 MB | NPU | -- |
Yolo-v6 | w8a8 | SA7255P ADP | Qualcomm® SA7255P | QNN_DLC | 3.209 ms | 1 - 22 MB | NPU | -- |
Yolo-v6 | w8a8 | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | TFLITE | 2.066 ms | 0 - 30 MB | NPU | -- |
Yolo-v6 | w8a8 | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | QNN_DLC | 1.365 ms | 0 - 27 MB | NPU | -- |
Yolo-v6 | w8a8 | SA8295P ADP | Qualcomm® SA8295P | TFLITE | 2.992 ms | 0 - 27 MB | NPU | -- |
Yolo-v6 | w8a8 | SA8295P ADP | Qualcomm® SA8295P | QNN_DLC | 2.311 ms | 1 - 28 MB | NPU | -- |
Yolo-v6 | w8a8 | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | TFLITE | 2.065 ms | 0 - 29 MB | NPU | -- |
Yolo-v6 | w8a8 | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | QNN_DLC | 1.362 ms | 1 - 27 MB | NPU | -- |
Yolo-v6 | w8a8 | SA8775P ADP | Qualcomm® SA8775P | TFLITE | 2.479 ms | 0 - 22 MB | NPU | -- |
Yolo-v6 | w8a8 | SA8775P ADP | Qualcomm® SA8775P | QNN_DLC | 1.694 ms | 1 - 24 MB | NPU | -- |
Yolo-v6 | w8a8 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | TFLITE | 2.062 ms | 0 - 29 MB | NPU | -- |
Yolo-v6 | w8a8 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | QNN_DLC | 1.364 ms | 1 - 28 MB | NPU | -- |
Yolo-v6 | w8a8 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | ONNX | 4.197 ms | 0 - 42 MB | NPU | -- |
Yolo-v6 | w8a8 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | TFLITE | 1.353 ms | 0 - 36 MB | NPU | -- |
Yolo-v6 | w8a8 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | QNN_DLC | 0.892 ms | 1 - 33 MB | NPU | -- |
Yolo-v6 | w8a8 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | ONNX | 2.936 ms | 0 - 121 MB | NPU | -- |
Yolo-v6 | w8a8 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | TFLITE | 1.356 ms | 0 - 27 MB | NPU | -- |
Yolo-v6 | w8a8 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | QNN_DLC | 0.815 ms | 1 - 25 MB | NPU | -- |
Yolo-v6 | w8a8 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | ONNX | 3.154 ms | 0 - 104 MB | NPU | -- |
Yolo-v6 | w8a8 | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN_DLC | 1.694 ms | 18 - 18 MB | NPU | -- |
Yolo-v6 | w8a8 | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 4.691 ms | 4 - 4 MB | NPU | -- |
Installation
Install the package via pip:
pip install "qai-hub-models[yolov6]"
Configure Qualcomm® AI Hub to run this model on a cloud-hosted device
Sign-in to Qualcomm® AI Hub with your
Qualcomm® ID. Once signed in navigate to Account -> Settings -> API Token
.
With this API token, you can configure your client to run models on the cloud hosted devices.
qai-hub configure --api_token API_TOKEN
Navigate to docs for more information.
Demo off target
The package contains a simple end-to-end demo that downloads pre-trained weights and runs this model on a sample input.
python -m qai_hub_models.models.yolov6.demo
The above demo runs a reference implementation of pre-processing, model inference, and post processing.
NOTE: If you want running in a Jupyter Notebook or Google Colab like environment, please add the following to your cell (instead of the above).
%run -m qai_hub_models.models.yolov6.demo
Run model on a cloud-hosted device
In addition to the demo, you can also run the model on a cloud-hosted Qualcomm® device. This script does the following:
- Performance check on-device on a cloud-hosted device
- Downloads compiled assets that can be deployed on-device for Android.
- Accuracy check between PyTorch and on-device outputs.
python -m qai_hub_models.models.yolov6.export
How does this work?
This export script leverages Qualcomm® AI Hub to optimize, validate, and deploy this model on-device. Lets go through each step below in detail:
Step 1: Compile model for on-device deployment
To compile a PyTorch model for on-device deployment, we first trace the model
in memory using the jit.trace
and then call the submit_compile_job
API.
import torch
import qai_hub as hub
from qai_hub_models.models.yolov6 import Model
# Load the model
torch_model = Model.from_pretrained()
# Device
device = hub.Device("Samsung Galaxy S24")
# Trace model
input_shape = torch_model.get_input_spec()
sample_inputs = torch_model.sample_inputs()
pt_model = torch.jit.trace(torch_model, [torch.tensor(data[0]) for _, data in sample_inputs.items()])
# Compile model on a specific device
compile_job = hub.submit_compile_job(
model=pt_model,
device=device,
input_specs=torch_model.get_input_spec(),
)
# Get target model to run on-device
target_model = compile_job.get_target_model()
Step 2: Performance profiling on cloud-hosted device
After compiling models from step 1. Models can be profiled model on-device using the
target_model
. Note that this scripts runs the model on a device automatically
provisioned in the cloud. Once the job is submitted, you can navigate to a
provided job URL to view a variety of on-device performance metrics.
profile_job = hub.submit_profile_job(
model=target_model,
device=device,
)
Step 3: Verify on-device accuracy
To verify the accuracy of the model on-device, you can run on-device inference on sample input data on the same cloud hosted device.
input_data = torch_model.sample_inputs()
inference_job = hub.submit_inference_job(
model=target_model,
device=device,
inputs=input_data,
)
on_device_output = inference_job.download_output_data()
With the output of the model, you can compute like PSNR, relative errors or spot check the output with expected output.
Note: This on-device profiling and inference requires access to Qualcomm® AI Hub. Sign up for access.
Run demo on a cloud-hosted device
You can also run the demo on-device.
python -m qai_hub_models.models.yolov6.demo --eval-mode on-device
NOTE: If you want running in a Jupyter Notebook or Google Colab like environment, please add the following to your cell (instead of the above).
%run -m qai_hub_models.models.yolov6.demo -- --eval-mode on-device
Deploying compiled model to Android
The models can be deployed using multiple runtimes:
TensorFlow Lite (
.tflite
export): This tutorial provides a guide to deploy the .tflite model in an Android application.QNN (
.so
export ): This sample app provides instructions on how to use the.so
shared library in an Android application.
View on Qualcomm® AI Hub
Get more details on Yolo-v6's performance across various devices here. Explore all available models on Qualcomm® AI Hub
License
- The license for the original implementation of Yolo-v6 can be found here.
- The license for the compiled assets for on-device deployment can be found here
References
- YOLOv6: A Single-Stage Object Detection Framework for Industrial Applications
- Source Model Implementation
Community
- Join our AI Hub Slack community to collaborate, post questions and learn more about on-device AI.
- For questions or feedback please reach out to us.