Yolo-v6 / README.md
qaihm-bot's picture
v0.34.0
738f4c9 verified
metadata
library_name: pytorch
license: other
tags:
  - real_time
  - android
pipeline_tag: object-detection

Yolo-v6: Optimized for Mobile Deployment

Real-time object detection optimized for mobile and edge

YoloV6 is a machine learning model that predicts bounding boxes and classes of objects in an image.

This model is an implementation of Yolo-v6 found here.

This repository provides scripts to run Yolo-v6 on Qualcomm® devices. More details on model performance across various devices, can be found here.

WARNING: The model assets are not readily available for download due to licensing restrictions.

Model Details

  • Model Type: Model_use_case.object_detection
  • Model Stats:
    • Model checkpoint: YoloV6-N
    • Input resolution: 640x640
    • Number of parameters: 4.68M
    • Model size (float): 17.9 MB
    • Model size (w8a8): 4.68 MB
    • Model size (w8a16): 5.03 MB
Model Precision Device Chipset Target Runtime Inference Time (ms) Peak Memory Range (MB) Primary Compute Unit Target Model
Yolo-v6 float QCS8275 (Proxy) Qualcomm® QCS8275 (Proxy) TFLITE 22.166 ms 0 - 43 MB NPU --
Yolo-v6 float QCS8275 (Proxy) Qualcomm® QCS8275 (Proxy) QNN_DLC 14.869 ms 0 - 74 MB NPU --
Yolo-v6 float QCS8450 (Proxy) Qualcomm® QCS8450 (Proxy) TFLITE 12.435 ms 0 - 42 MB NPU --
Yolo-v6 float QCS8450 (Proxy) Qualcomm® QCS8450 (Proxy) QNN_DLC 7.409 ms 5 - 40 MB NPU --
Yolo-v6 float QCS8550 (Proxy) Qualcomm® QCS8550 (Proxy) TFLITE 10.718 ms 0 - 15 MB NPU --
Yolo-v6 float QCS8550 (Proxy) Qualcomm® QCS8550 (Proxy) QNN_DLC 4.501 ms 5 - 33 MB NPU --
Yolo-v6 float QCS9075 (Proxy) Qualcomm® QCS9075 (Proxy) TFLITE 12.557 ms 0 - 43 MB NPU --
Yolo-v6 float QCS9075 (Proxy) Qualcomm® QCS9075 (Proxy) QNN_DLC 6.25 ms 2 - 69 MB NPU --
Yolo-v6 float SA7255P ADP Qualcomm® SA7255P TFLITE 22.166 ms 0 - 43 MB NPU --
Yolo-v6 float SA7255P ADP Qualcomm® SA7255P QNN_DLC 14.869 ms 0 - 74 MB NPU --
Yolo-v6 float SA8255 (Proxy) Qualcomm® SA8255P (Proxy) TFLITE 10.987 ms 0 - 22 MB NPU --
Yolo-v6 float SA8255 (Proxy) Qualcomm® SA8255P (Proxy) QNN_DLC 4.513 ms 4 - 35 MB NPU --
Yolo-v6 float SA8295P ADP Qualcomm® SA8295P TFLITE 13.624 ms 0 - 29 MB NPU --
Yolo-v6 float SA8295P ADP Qualcomm® SA8295P QNN_DLC 6.94 ms 4 - 32 MB NPU --
Yolo-v6 float SA8650 (Proxy) Qualcomm® SA8650P (Proxy) TFLITE 10.779 ms 0 - 15 MB NPU --
Yolo-v6 float SA8650 (Proxy) Qualcomm® SA8650P (Proxy) QNN_DLC 4.523 ms 5 - 31 MB NPU --
Yolo-v6 float SA8775P ADP Qualcomm® SA8775P TFLITE 12.557 ms 0 - 43 MB NPU --
Yolo-v6 float SA8775P ADP Qualcomm® SA8775P QNN_DLC 6.25 ms 2 - 69 MB NPU --
Yolo-v6 float Samsung Galaxy S23 Snapdragon® 8 Gen 2 Mobile TFLITE 10.745 ms 0 - 16 MB NPU --
Yolo-v6 float Samsung Galaxy S23 Snapdragon® 8 Gen 2 Mobile QNN_DLC 4.549 ms 3 - 34 MB NPU --
Yolo-v6 float Samsung Galaxy S23 Snapdragon® 8 Gen 2 Mobile ONNX 5.639 ms 0 - 49 MB NPU --
Yolo-v6 float Samsung Galaxy S24 Snapdragon® 8 Gen 3 Mobile TFLITE 7.401 ms 0 - 58 MB NPU --
Yolo-v6 float Samsung Galaxy S24 Snapdragon® 8 Gen 3 Mobile QNN_DLC 3.225 ms 5 - 111 MB NPU --
Yolo-v6 float Samsung Galaxy S24 Snapdragon® 8 Gen 3 Mobile ONNX 4.108 ms 2 - 151 MB NPU --
Yolo-v6 float Snapdragon 8 Elite QRD Snapdragon® 8 Elite Mobile TFLITE 7.287 ms 0 - 51 MB NPU --
Yolo-v6 float Snapdragon 8 Elite QRD Snapdragon® 8 Elite Mobile QNN_DLC 2.949 ms 5 - 76 MB NPU --
Yolo-v6 float Snapdragon 8 Elite QRD Snapdragon® 8 Elite Mobile ONNX 4.118 ms 5 - 102 MB NPU --
Yolo-v6 float Snapdragon X Elite CRD Snapdragon® X Elite QNN_DLC 4.995 ms 0 - 0 MB NPU --
Yolo-v6 float Snapdragon X Elite CRD Snapdragon® X Elite ONNX 6.154 ms 6 - 6 MB NPU --
Yolo-v6 w8a16 QCS8275 (Proxy) Qualcomm® QCS8275 (Proxy) QNN_DLC 5.183 ms 2 - 28 MB NPU --
Yolo-v6 w8a16 QCS8450 (Proxy) Qualcomm® QCS8450 (Proxy) QNN_DLC 2.751 ms 2 - 33 MB NPU --
Yolo-v6 w8a16 QCS8550 (Proxy) Qualcomm® QCS8550 (Proxy) QNN_DLC 2.156 ms 2 - 12 MB NPU --
Yolo-v6 w8a16 QCS9075 (Proxy) Qualcomm® QCS9075 (Proxy) QNN_DLC 2.744 ms 0 - 26 MB NPU --
Yolo-v6 w8a16 RB3 Gen 2 (Proxy) Qualcomm® QCS6490 (Proxy) QNN_DLC 8.589 ms 0 - 29 MB NPU --
Yolo-v6 w8a16 SA7255P ADP Qualcomm® SA7255P QNN_DLC 5.183 ms 2 - 28 MB NPU --
Yolo-v6 w8a16 SA8255 (Proxy) Qualcomm® SA8255P (Proxy) QNN_DLC 2.186 ms 3 - 12 MB NPU --
Yolo-v6 w8a16 SA8295P ADP Qualcomm® SA8295P QNN_DLC 3.313 ms 1 - 32 MB NPU --
Yolo-v6 w8a16 SA8650 (Proxy) Qualcomm® SA8650P (Proxy) QNN_DLC 2.173 ms 4 - 12 MB NPU --
Yolo-v6 w8a16 SA8775P ADP Qualcomm® SA8775P QNN_DLC 2.744 ms 0 - 26 MB NPU --
Yolo-v6 w8a16 Samsung Galaxy S23 Snapdragon® 8 Gen 2 Mobile QNN_DLC 2.184 ms 3 - 12 MB NPU --
Yolo-v6 w8a16 Samsung Galaxy S23 Snapdragon® 8 Gen 2 Mobile ONNX 5.802 ms 0 - 34 MB NPU --
Yolo-v6 w8a16 Samsung Galaxy S24 Snapdragon® 8 Gen 3 Mobile QNN_DLC 1.452 ms 2 - 41 MB NPU --
Yolo-v6 w8a16 Samsung Galaxy S24 Snapdragon® 8 Gen 3 Mobile ONNX 4.183 ms 2 - 101 MB NPU --
Yolo-v6 w8a16 Snapdragon 8 Elite QRD Snapdragon® 8 Elite Mobile QNN_DLC 1.334 ms 2 - 34 MB NPU --
Yolo-v6 w8a16 Snapdragon 8 Elite QRD Snapdragon® 8 Elite Mobile ONNX 3.94 ms 2 - 102 MB NPU --
Yolo-v6 w8a16 Snapdragon X Elite CRD Snapdragon® X Elite QNN_DLC 2.587 ms 8 - 8 MB NPU --
Yolo-v6 w8a16 Snapdragon X Elite CRD Snapdragon® X Elite ONNX 6.284 ms 3 - 3 MB NPU --
Yolo-v6 w8a8 QCS8275 (Proxy) Qualcomm® QCS8275 (Proxy) TFLITE 4.421 ms 0 - 20 MB NPU --
Yolo-v6 w8a8 QCS8275 (Proxy) Qualcomm® QCS8275 (Proxy) QNN_DLC 3.209 ms 1 - 22 MB NPU --
Yolo-v6 w8a8 QCS8450 (Proxy) Qualcomm® QCS8450 (Proxy) TFLITE 2.273 ms 0 - 33 MB NPU --
Yolo-v6 w8a8 QCS8450 (Proxy) Qualcomm® QCS8450 (Proxy) QNN_DLC 1.674 ms 1 - 32 MB NPU --
Yolo-v6 w8a8 QCS8550 (Proxy) Qualcomm® QCS8550 (Proxy) TFLITE 2.078 ms 0 - 29 MB NPU --
Yolo-v6 w8a8 QCS8550 (Proxy) Qualcomm® QCS8550 (Proxy) QNN_DLC 1.358 ms 1 - 26 MB NPU --
Yolo-v6 w8a8 QCS9075 (Proxy) Qualcomm® QCS9075 (Proxy) TFLITE 2.479 ms 0 - 22 MB NPU --
Yolo-v6 w8a8 QCS9075 (Proxy) Qualcomm® QCS9075 (Proxy) QNN_DLC 1.694 ms 1 - 24 MB NPU --
Yolo-v6 w8a8 RB3 Gen 2 (Proxy) Qualcomm® QCS6490 (Proxy) TFLITE 4.415 ms 0 - 30 MB NPU --
Yolo-v6 w8a8 RB3 Gen 2 (Proxy) Qualcomm® QCS6490 (Proxy) QNN_DLC 4.897 ms 1 - 27 MB NPU --
Yolo-v6 w8a8 RB5 (Proxy) Qualcomm® QCS8250 (Proxy) TFLITE 36.109 ms 3 - 12 MB NPU --
Yolo-v6 w8a8 SA7255P ADP Qualcomm® SA7255P TFLITE 4.421 ms 0 - 20 MB NPU --
Yolo-v6 w8a8 SA7255P ADP Qualcomm® SA7255P QNN_DLC 3.209 ms 1 - 22 MB NPU --
Yolo-v6 w8a8 SA8255 (Proxy) Qualcomm® SA8255P (Proxy) TFLITE 2.066 ms 0 - 30 MB NPU --
Yolo-v6 w8a8 SA8255 (Proxy) Qualcomm® SA8255P (Proxy) QNN_DLC 1.365 ms 0 - 27 MB NPU --
Yolo-v6 w8a8 SA8295P ADP Qualcomm® SA8295P TFLITE 2.992 ms 0 - 27 MB NPU --
Yolo-v6 w8a8 SA8295P ADP Qualcomm® SA8295P QNN_DLC 2.311 ms 1 - 28 MB NPU --
Yolo-v6 w8a8 SA8650 (Proxy) Qualcomm® SA8650P (Proxy) TFLITE 2.065 ms 0 - 29 MB NPU --
Yolo-v6 w8a8 SA8650 (Proxy) Qualcomm® SA8650P (Proxy) QNN_DLC 1.362 ms 1 - 27 MB NPU --
Yolo-v6 w8a8 SA8775P ADP Qualcomm® SA8775P TFLITE 2.479 ms 0 - 22 MB NPU --
Yolo-v6 w8a8 SA8775P ADP Qualcomm® SA8775P QNN_DLC 1.694 ms 1 - 24 MB NPU --
Yolo-v6 w8a8 Samsung Galaxy S23 Snapdragon® 8 Gen 2 Mobile TFLITE 2.062 ms 0 - 29 MB NPU --
Yolo-v6 w8a8 Samsung Galaxy S23 Snapdragon® 8 Gen 2 Mobile QNN_DLC 1.364 ms 1 - 28 MB NPU --
Yolo-v6 w8a8 Samsung Galaxy S23 Snapdragon® 8 Gen 2 Mobile ONNX 4.197 ms 0 - 42 MB NPU --
Yolo-v6 w8a8 Samsung Galaxy S24 Snapdragon® 8 Gen 3 Mobile TFLITE 1.353 ms 0 - 36 MB NPU --
Yolo-v6 w8a8 Samsung Galaxy S24 Snapdragon® 8 Gen 3 Mobile QNN_DLC 0.892 ms 1 - 33 MB NPU --
Yolo-v6 w8a8 Samsung Galaxy S24 Snapdragon® 8 Gen 3 Mobile ONNX 2.936 ms 0 - 121 MB NPU --
Yolo-v6 w8a8 Snapdragon 8 Elite QRD Snapdragon® 8 Elite Mobile TFLITE 1.356 ms 0 - 27 MB NPU --
Yolo-v6 w8a8 Snapdragon 8 Elite QRD Snapdragon® 8 Elite Mobile QNN_DLC 0.815 ms 1 - 25 MB NPU --
Yolo-v6 w8a8 Snapdragon 8 Elite QRD Snapdragon® 8 Elite Mobile ONNX 3.154 ms 0 - 104 MB NPU --
Yolo-v6 w8a8 Snapdragon X Elite CRD Snapdragon® X Elite QNN_DLC 1.694 ms 18 - 18 MB NPU --
Yolo-v6 w8a8 Snapdragon X Elite CRD Snapdragon® X Elite ONNX 4.691 ms 4 - 4 MB NPU --

Installation

Install the package via pip:

pip install "qai-hub-models[yolov6]"

Configure Qualcomm® AI Hub to run this model on a cloud-hosted device

Sign-in to Qualcomm® AI Hub with your Qualcomm® ID. Once signed in navigate to Account -> Settings -> API Token.

With this API token, you can configure your client to run models on the cloud hosted devices.

qai-hub configure --api_token API_TOKEN

Navigate to docs for more information.

Demo off target

The package contains a simple end-to-end demo that downloads pre-trained weights and runs this model on a sample input.

python -m qai_hub_models.models.yolov6.demo

The above demo runs a reference implementation of pre-processing, model inference, and post processing.

NOTE: If you want running in a Jupyter Notebook or Google Colab like environment, please add the following to your cell (instead of the above).

%run -m qai_hub_models.models.yolov6.demo

Run model on a cloud-hosted device

In addition to the demo, you can also run the model on a cloud-hosted Qualcomm® device. This script does the following:

  • Performance check on-device on a cloud-hosted device
  • Downloads compiled assets that can be deployed on-device for Android.
  • Accuracy check between PyTorch and on-device outputs.
python -m qai_hub_models.models.yolov6.export

How does this work?

This export script leverages Qualcomm® AI Hub to optimize, validate, and deploy this model on-device. Lets go through each step below in detail:

Step 1: Compile model for on-device deployment

To compile a PyTorch model for on-device deployment, we first trace the model in memory using the jit.trace and then call the submit_compile_job API.

import torch

import qai_hub as hub
from qai_hub_models.models.yolov6 import Model

# Load the model
torch_model = Model.from_pretrained()

# Device
device = hub.Device("Samsung Galaxy S24")

# Trace model
input_shape = torch_model.get_input_spec()
sample_inputs = torch_model.sample_inputs()

pt_model = torch.jit.trace(torch_model, [torch.tensor(data[0]) for _, data in sample_inputs.items()])

# Compile model on a specific device
compile_job = hub.submit_compile_job(
    model=pt_model,
    device=device,
    input_specs=torch_model.get_input_spec(),
)

# Get target model to run on-device
target_model = compile_job.get_target_model()

Step 2: Performance profiling on cloud-hosted device

After compiling models from step 1. Models can be profiled model on-device using the target_model. Note that this scripts runs the model on a device automatically provisioned in the cloud. Once the job is submitted, you can navigate to a provided job URL to view a variety of on-device performance metrics.

profile_job = hub.submit_profile_job(
    model=target_model,
    device=device,
)
        

Step 3: Verify on-device accuracy

To verify the accuracy of the model on-device, you can run on-device inference on sample input data on the same cloud hosted device.

input_data = torch_model.sample_inputs()
inference_job = hub.submit_inference_job(
    model=target_model,
    device=device,
    inputs=input_data,
)
    on_device_output = inference_job.download_output_data()

With the output of the model, you can compute like PSNR, relative errors or spot check the output with expected output.

Note: This on-device profiling and inference requires access to Qualcomm® AI Hub. Sign up for access.

Run demo on a cloud-hosted device

You can also run the demo on-device.

python -m qai_hub_models.models.yolov6.demo --eval-mode on-device

NOTE: If you want running in a Jupyter Notebook or Google Colab like environment, please add the following to your cell (instead of the above).

%run -m qai_hub_models.models.yolov6.demo -- --eval-mode on-device

Deploying compiled model to Android

The models can be deployed using multiple runtimes:

  • TensorFlow Lite (.tflite export): This tutorial provides a guide to deploy the .tflite model in an Android application.

  • QNN (.so export ): This sample app provides instructions on how to use the .so shared library in an Android application.

View on Qualcomm® AI Hub

Get more details on Yolo-v6's performance across various devices here. Explore all available models on Qualcomm® AI Hub

License

  • The license for the original implementation of Yolo-v6 can be found here.
  • The license for the compiled assets for on-device deployment can be found here

References

Community