textf23 / README.md
quzo's picture
Model card auto-generated by SimpleTuner
446f8e6 verified
---
license: other
base_model: "black-forest-labs/FLUX.2-dev"
tags:
- flux2
- flux2-diffusers
- text-to-image
- image-to-image
- diffusers
- simpletuner
- safe-for-work
- lora
- template:sd-lora
- standard
pipeline_tag: text-to-image
inference: true
---
# quzo/textf23
This is a PEFT LoRA derived from [black-forest-labs/FLUX.2-dev](https://huggingface.co/black-forest-labs/FLUX.2-dev).
The main validation prompt used during training was:
```
quz0 man is holding a sign that says hello world from flux2
```
## Validation settings
- CFG: `4.0`
- CFG Rescale: `0.0`
- Steps: `16`
- Sampler: `FlowMatchEulerDiscreteScheduler`
- Seed: `42`
- Resolution: `1024x1024`
Note: The validation settings are not necessarily the same as the [training settings](#training-settings).
<Gallery />
The text encoder **was not** trained.
You may reuse the base model text encoder for inference.
## Training settings
- Training epochs: 4
- Training steps: 2700
- Learning rate: 0.0001
- Learning rate schedule: constant
- Warmup steps: 0
- Max grad value: 2.0
- Effective batch size: 2
- Micro-batch size: 1
- Gradient accumulation steps: 2
- Number of GPUs: 1
- Gradient checkpointing: True
- Prediction type: flow_matching[]
- Optimizer: adamw_bf16
- Trainable parameter precision: Pure BF16
- Base model precision: `no_change`
- Caption dropout probability: 0.1%
- LoRA Rank: 32
- LoRA Alpha: 32.0
- LoRA Dropout: 0.1
- LoRA initialisation style: default
- LoRA mode: Standard
## Datasets
### emi-256
- Repeats: 10
- Total number of images: 10
- Total number of aspect buckets: 1
- Resolution: 0.065536 megapixels
- Cropped: False
- Crop style: None
- Crop aspect: None
- Used for regularisation data: No
### emi-crop-256
- Repeats: 10
- Total number of images: 10
- Total number of aspect buckets: 2
- Resolution: 0.065536 megapixels
- Cropped: True
- Crop style: center
- Crop aspect: square
- Used for regularisation data: No
### emi-512
- Repeats: 10
- Total number of images: 10
- Total number of aspect buckets: 2
- Resolution: 0.262144 megapixels
- Cropped: False
- Crop style: None
- Crop aspect: None
- Used for regularisation data: No
### emi-crop-512
- Repeats: 10
- Total number of images: 10
- Total number of aspect buckets: 2
- Resolution: 0.262144 megapixels
- Cropped: True
- Crop style: center
- Crop aspect: square
- Used for regularisation data: No
### emi-768
- Repeats: 10
- Total number of images: 10
- Total number of aspect buckets: 3
- Resolution: 0.589824 megapixels
- Cropped: False
- Crop style: None
- Crop aspect: None
- Used for regularisation data: No
### emi-crop-768
- Repeats: 10
- Total number of images: 10
- Total number of aspect buckets: 2
- Resolution: 0.589824 megapixels
- Cropped: True
- Crop style: center
- Crop aspect: square
- Used for regularisation data: No
### emi-1024
- Repeats: 10
- Total number of images: 10
- Total number of aspect buckets: 2
- Resolution: 1.048576 megapixels
- Cropped: False
- Crop style: None
- Crop aspect: None
- Used for regularisation data: No
### emi-crop-1024
- Repeats: 10
- Total number of images: 10
- Total number of aspect buckets: 2
- Resolution: 1.048576 megapixels
- Cropped: True
- Crop style: center
- Crop aspect: square
- Used for regularisation data: No
### emi-1440
- Repeats: 10
- Total number of images: 10
- Total number of aspect buckets: 2
- Resolution: 2.0736 megapixels
- Cropped: False
- Crop style: None
- Crop aspect: None
- Used for regularisation data: No
### emi-crop-1440
- Repeats: 10
- Total number of images: 10
- Total number of aspect buckets: 2
- Resolution: 2.0736 megapixels
- Cropped: True
- Crop style: center
- Crop aspect: square
- Used for regularisation data: No
## Inference
```python
import torch
from diffusers import DiffusionPipeline
model_id = 'black-forest-labs/FLUX.2-dev'
adapter_id = 'quzo/quzo/textf23'
pipeline = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.bfloat16) # loading directly in bf16
pipeline.load_lora_weights(adapter_id)
prompt = "quz0 man is holding a sign that says hello world from flux2"
negative_prompt = 'ugly, cropped, blurry, low-quality, mediocre average'
## Optional: quantise the model to save on vram.
## Note: The model was not quantised during training, so it is not necessary to quantise it during inference time.
#from optimum.quanto import quantize, freeze, qint8
#quantize(pipeline.transformer, weights=qint8)
#freeze(pipeline.transformer)
pipeline.to('cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu') # the pipeline is already in its target precision level
model_output = pipeline(
prompt=prompt,
negative_prompt=negative_prompt,
num_inference_steps=16,
generator=torch.Generator(device='cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu').manual_seed(42),
width=1024,
height=1024,
guidance_scale=4.0,
).images[0]
model_output.save("output.png", format="PNG")
```