|
--- |
|
language: |
|
- en |
|
tags: |
|
- Manga |
|
- Object Detection |
|
- OCR |
|
- Clustering |
|
- Diarisation |
|
--- |
|
<style> |
|
.title-container { |
|
display: flex; |
|
flex-direction: column; /* Stack elements vertically */ |
|
justify-content: center; |
|
align-items: center; |
|
} |
|
|
|
.title { |
|
font-size: 2em; |
|
text-align: center; |
|
color: #333; |
|
font-family: 'Comic Sans MS', cursive; /* Use Comic Sans MS font */ |
|
text-transform: uppercase; |
|
letter-spacing: 0.1em; |
|
padding: 0.5em 0 0.2em; |
|
background: transparent; |
|
} |
|
|
|
.title span { |
|
background: -webkit-linear-gradient(45deg, #6495ED, #4169E1); /* Blue gradient */ |
|
-webkit-background-clip: text; |
|
-webkit-text-fill-color: transparent; |
|
} |
|
|
|
.subheading { |
|
font-size: 1.5em; /* Adjust the size as needed */ |
|
text-align: center; |
|
color: #555; /* Adjust the color as needed */ |
|
font-family: 'Comic Sans MS', cursive; /* Use Comic Sans MS font */ |
|
} |
|
|
|
.authors { |
|
font-size: 1em; /* Adjust the size as needed */ |
|
text-align: center; |
|
color: #777; /* Adjust the color as needed */ |
|
font-family: 'Comic Sans MS', cursive; /* Use Comic Sans MS font */ |
|
padding-top: 1em; |
|
} |
|
|
|
.affil { |
|
font-size: 1em; /* Adjust the size as needed */ |
|
text-align: center; |
|
color: #777; /* Adjust the color as needed */ |
|
font-family: 'Comic Sans MS', cursive; /* Use Comic Sans MS font */ |
|
} |
|
|
|
</style> |
|
|
|
<div class="title-container"> |
|
<div class="title"> |
|
The <span>Ma</span>n<span>g</span>a Wh<span>i</span>sperer |
|
</div> |
|
<div class="subheading"> |
|
Automatically Generating Transcriptions for Comics |
|
</div> |
|
<div class="authors"> |
|
Ragav Sachdeva and Andrew Zisserman |
|
</div> |
|
<div class="affil"> |
|
University of Oxford |
|
</div> |
|
<div style="display: flex;"> |
|
<a href="https://arxiv.org/abs/2401.10224"><img alt="Static Badge" src="https://img.shields.io/badge/arXiv-2401.10224-blue"></a> |
|
  |
|
<img alt="Dynamic JSON Badge" src="https://img.shields.io/badge/dynamic/json?url=https%3A%2F%2Fhuggingface.co%2Fapi%2Fmodels%2Fragavsachdeva%2Fmagi%3Fexpand%255B%255D%3Ddownloads%26expand%255B%255D%3DdownloadsAllTime&query=%24.downloadsAllTime&label=%F0%9F%A4%97%20Downloads"> |
|
</div> |
|
</div> |
|
|
|
 |
|
|
|
# Usage |
|
```python |
|
from transformers import AutoModel |
|
import numpy as np |
|
from PIL import Image |
|
import torch |
|
import os |
|
|
|
images = [ |
|
"path_to_image1.jpg", |
|
"path_to_image2.png", |
|
] |
|
|
|
def read_image_as_np_array(image_path): |
|
with open(image_path, "rb") as file: |
|
image = Image.open(file).convert("L").convert("RGB") |
|
image = np.array(image) |
|
return image |
|
|
|
images = [read_image_as_np_array(image) for image in images] |
|
|
|
model = AutoModel.from_pretrained("ragavsachdeva/magi", trust_remote_code=True).cuda() |
|
with torch.no_grad(): |
|
results = model.predict_detections_and_associations(images) |
|
text_bboxes_for_all_images = [x["texts"] for x in results] |
|
ocr_results = model.predict_ocr(images, text_bboxes_for_all_images) |
|
|
|
for i in range(len(images)): |
|
model.visualise_single_image_prediction(images[i], results[i], filename=f"image_{i}.png") |
|
model.generate_transcript_for_single_image(results[i], ocr_results[i], filename=f"transcript_{i}.txt") |
|
``` |
|
|
|
# License and Citation |
|
The provided model and datasets are available for unrestricted use in personal, research, non-commercial, and not-for-profit endeavors. For any other usage scenarios, kindly contact me via email, providing a detailed description of your requirements, to establish a tailored licensing arrangement. |
|
My contact information can be found on my website: ragavsachdeva [dot] github [dot] io |
|
|
|
``` |
|
@misc{sachdeva2024manga, |
|
title={The Manga Whisperer: Automatically Generating Transcriptions for Comics}, |
|
author={Ragav Sachdeva and Andrew Zisserman}, |
|
year={2024}, |
|
eprint={2401.10224}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CV} |
|
} |
|
``` |