wav2vec2-tamil-binary

This model is a fine-tuned version of Amrrs/wav2vec2-large-xlsr-53-tamil on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5318
  • Accuracy: 0.8235
  • F1: 0.7692

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
0.6791 1.0 13 0.6893 0.5686 0.0
0.6733 2.0 26 0.6779 0.5686 0.0
0.6518 3.0 39 0.6433 0.6471 0.3077
0.6022 4.0 52 0.5652 0.8235 0.7429
0.5153 5.0 65 0.5481 0.7647 0.625
0.4387 6.0 78 0.4189 0.8431 0.8000
0.3883 7.0 91 0.3900 0.8431 0.8000
0.3375 8.0 104 0.4485 0.8039 0.7368
0.2891 9.0 117 0.5500 0.7647 0.6471
0.2961 10.0 130 0.3474 0.8431 0.8000
0.231 11.0 143 0.5168 0.8235 0.7568
0.2029 12.0 156 0.3744 0.8431 0.8000
0.2102 13.0 169 0.4384 0.8235 0.7692
0.1564 14.0 182 0.4245 0.8431 0.8000
0.1565 15.0 195 0.4967 0.8235 0.7692
0.1308 16.0 208 0.5096 0.8235 0.7692
0.1578 17.0 221 0.4682 0.8235 0.7692
0.1581 18.0 234 0.5343 0.8431 0.7895
0.143 19.0 247 0.5352 0.8235 0.7692
0.1637 20.0 260 0.5318 0.8235 0.7692

Framework versions

  • Transformers 4.53.3
  • Pytorch 2.9.1+cu128
  • Datasets 4.4.1
  • Tokenizers 0.21.2
Downloads last month
-
Safetensors
Model size
0.3B params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for ramesh070/wav2vec2-tamil-binary

Finetuned
(2)
this model